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§ >~ Two separate ‘schools’ have offered what are claimed to be general foundations
@) ~ for the subject of non-equilibrium statistical mechanics, based respectively on
(=4 E subdynamics and information theory. These appear to be unrelated, to start
43N @) from conflicting interpretations of probability, to generate different methodology
O and to be useful in non-overlapping applications. The present paper is a study of
=w the relation between the work of the two schools. After reviewing them critically

in a presentation that unifies the notation used, the connection between them
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Phil. Trans. R. Soc. Lond. A (1994) 346, 259-305 © 1994 The Royal Society
Printed in Great Britain 259

PHILOSOPHICAL
TRANSACTIONS
OF

Y
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to ég(z%

Philosophical Transactions: Physical Sciences and Engineering. MIKOIY
WwWw.jstor.org


http://rsta.royalsocietypublishing.org/

\
\
8 \
i

a
//\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A \
)

[

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

260 J. P. Dougherty

is developed. It is concluded, subject to some provisos, that they are equivalent.
It is suggested that the subject could be unified on this basis, and that the
methodologies be made more generally available.

1. Introduction

Statistical mechanics concerns the connection between microscopic and macro-
scopic dynamics. There is an immediate difficulty: the macroscopic properties
of a specimen of matter (supposed in a condition of isolation) are characterized
observationally by the tendency to evolve towards states of equilibrium. Micro-
scopic dynamics, taken here to mean classical hamiltonian dynamics, reveals no
such concept of equilibrium, and, as is well known, the governing equations are
reversible (Loschmidt’s paradox).

Accepting the undoubted existence of equilibrium, the subject is split into
equilibrium and non-equilibrium statistical mechanics. Foundations for the equi-
librium case are provided by the microcanonical and canonical distributions and
although opinions vary as to how these are to be justified, they constitute a
working basis for theoretical studies of the properties of matter in equilibrium.

By comparison, non-equilibrium statistical mechanics (NESM) is an undevel-
oped subject. One widespread opinion is that it cannot be given general founda-
tions analogous to those of equilibrium statistical mechanics. In one sense that
may be so, as there is virtually no limitation on the scope of the questions that
may be asked about time-dependent phenomena. In the present paper we limit
attention to a particular class of question. Given a macroscopic system, a definite
level of reduced description is to be adopted, and we ask for evolution equations
for the parameters or fields which specify that description. The ‘motion’ of the
system as so described would then be capable of prediction. In practice, much of
the work attempted in NESM falls into this class.

Within this narrower meaning to NESM, various writers have sought and pro-
posed general foundations for the subject. Here we shall consider two broad and
very contrasted approaches, which also, to a considerable extent, form personal
‘schools’, though it is not intended to suggest that the work of other writers may
be disregarded.

The first of these is the ‘Brussels school’, associated with Professor 1. Prigogine
and numerous co-authors. This development starts from microscopic dynamics
(Hamilton’s or Schrédinger’s equations) and it is regarded as important not to
introduce any non-dynamical ideas, such as might be imported from information
theory: everything should be derived from dynamics alone. Naturally approxi-
mations, perturbation expansions and the like have to be introduced if progress
is to be made. The aim is thus a dynamical separation into the parameters to
be retained in the desired description, and those to be discarded. This separa-
tion, if it exists, is to emerge from dynamics as an asymptotic property, valid for
large time. There are several versions and extensions of the theory, but we shall
concentrate here on the so-called method of subdynamics (Prigogine et al. 1969;
Balescu 1975).

The approach of this school may be regarded as descended from that of Boltz-
mann, who, in setting up his equation in the kinetic theory of gases, sought
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Foundations of non-equilibrium statistical mechanics 261

to take account of microscopic dynamics by detailed consideration of collisions.
However, he found that he could discard the unwanted aspects of these only by
means of his famous ‘hypothesis of molecular chaos’. This line of development
may be further traced through the Ehrenfest (1912) encyclopaedia article, the
methodology of Chapman and Enskog (Chapman & Cowling 1970) and the well-
known article of Bogoliubov (1962), who introduced a more general hypothesis
than Boltzmann’s. These developments use the concept of probability, but the
underlying philosophy need not be emphasized, and most physicists would con-
ceive it in terms of numerous repetitions of an experiment. The lack of precision
is then traced to the practical impossibility of reproducing (in microscopic terms)
the initial preparation of the system.

The second school, which we shall refer to as the ‘Maxent school’, is that as-
sociated with Professor E. T. Jaynes and his collaborators. It is important to
realize that their approach amounts not merely to the development of a different
methodology. It originates in an alternative interpretation for probability itself,
namely the adoption of the bayesian viewpoint. In several recent articles, Jaynes
has used the term ‘predictive statistical mechanics’, which well conveys the idea.
The prediction of the future macroscopic evolution of a system cannot be done
with certainty on the basis of initial macroscopic data (in physicists’ words, there
are fluctuations). This is a consequence of the continuing influence of the param-
eters or data which are supposed to be discarded in the selected description. The
problem is thus subject to an intrinsic ambiguity, suggesting that the dynami-
cal equations themselves are insufficient; the introduction of further hypotheses
such as those of Boltzmann and Bogoliubov can be seen as attempts to escape
the ambiguity. The work of this school proposes instead that a proper theory
of statistical inference should replace these ad hoc hypotheses. Conventional sta-
tistical inference, of which the school is deeply critical, is not adopted; instead,
the bayesian philosophy leads to the use of information theory, and hence to the
algorithm of entropy maximization, to set up a theory of NESM. Details of the
development of this work up to 1983 (including the criticism of statistical infer-
ence) can be conveniently read in a reprint collection of papers by Jaynest (some
of which are otherwise difficult of access) published in 1983; we may also refer to
the text of Grandy (1988).

This approach may be regarded as descended from that of Gibbs; in the equilib-
rium case the ‘method of most probable state’ involves the same mathematics as
that of entropy maximisation, and is very straightforward. The extension to the
non-equilibrium case is not immediately obvious, and, for the class of problems
considered in the present paper, is technically difficult; the attractive simplicity
of the method in equilibrium statistical mechanics is not inherited. This is not
surprising, as it is inevitable that the dynamical equations should have a detailed
influence on the problem of time evolution. The early development of this ap-
proach (Jaynes, pp. 4-39) appeared in 1957, following that of information theory
itself in the late 1940s. Jaynes records that he was in possession of a generaliza-
tion to NESM in 1962; see Jaynes, p. 239, and his book review (1968), not included
in the 1983 collection.

+ Throughout the present article, reference to material contained in this book will be cited in the form
‘Jaynes’, followed by a page number.
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262 J. P. Dougherty

In parallel with the above development, there is also the independent work of
Zubarev, which appeared in Soviet journals in the early 1960s, and is described in
his book of 1974 (all of this work is available in English translation, but the book
supersedes the journal articles for most purposes). This work starts from the point
of view of Bogoliubov (and indeed under his influence), and makes no mention
of bayesian inference, yet reaches results which (in the context of the class of
problem considered here) can be transformed into those of the Maxent school (as
we demonstrate below, §17). Zubarev proceeds intuitively by adopting so-called
‘quasi-equilibrium’ distributions as the basis for an approximation scheme. In
the subsequent development he cites an analogy with the Gell-Mann—Goldberger
theory of scattering in quantum mechanics as justification for his methods.

At this point, it may well be asked how the work of the two ‘schools’ has been
received by statistical physicists generally, i.e. by non-members. I think it fair
to answer that their reception must have seemed disappointing. One reason may
be the point, already referred to, that many physicists do not expect there to
exist a general formalism along the lines considered. In other words, intuition
and experience lead them to conclude that an unwise question is being asked.
Anybody holding that view can of course be excused from devoting time to the
matter, but he or she might nevertheless be interested to see it proved to be
wrong!

In my opinion, the styles of publication adopted by the two main schools have
not served their causes well. In the case of the Brussels school the number of
publications has been very large, many of them cross-referenced internally within
the school, in such a way as to overwhelm the outsider; the book by Balescu
(1975) is a help, but this is itself somewhat eclectic within the school as a whole,
and is rather daunting. On the other hand, at least until the appearance of a
review article by Grandy (1980), which was later superseded by his book, (1988),
the Maxent school suffered from paucity of publications, which tended to be in
obscure places, and to have the appearance of preliminary announcements, so
far as technical details are concerned, with heavy emphasis upon philosophical
debate. And while it is plain that neither school sees merit in the other, this has
to be deduced not from any passages of comment in depth, but rather from the
almost complete absence of reference by either to the work of the other.

More cogently, it will be asked in this article whether the methods developed
by the respective schools lead eventually to the same formalism, or at least finally
to the same results. The formalisms have such a different appearance that one
may well conclude that equivalence is unlikely, or far from easy to demonstrate.
But here one should recall that practical results may turn out to be identical even
if derived from apparently different distributions, an elementary example being
the microcanonical and canonical distributions in equilibrium.

One might alternatively seek an application in which the two formalisms give
demonstrably different results, so that one (at least) of them might be falsified.
Unfortunately, the technical details of such calculations are so formidable that
discrepancies might result merely from the approximations and expansions used.
One instance where agreement has been recorded is the case of a dilute gas with
interaction potential in the form of a normal distribution (Balescu 1975; Stirland
1983), for which the kinetic equation has been derived to lowest order in the
interaction. Apart from this, comparative results for a common problem do not
seem to be available.

Phil. Trans. R. Soc. Lond. A (1994)
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The question of equivalence (in some sense to be made clear) seems to the
present author to be of great importance. If the two formalisms are indeed equiv-
alent, it may be possible to weld them together, or to present them as special
cases or aspects of something more general. This would offer the opportunity to
put NESM onto general foundations which would be more widely acceptable to the
majority of interested physicists, and it might be possible to choose more freely
from the very different methodologies (expansions, etc.) which they use.

By contrast, it would be of the greatest interest to philosophers of science if the
two formalisms could be shown to be definitely inequivalent, for that might even-
tually provide evidence to support one or other of the available interpretations of
probability (frequency theory, subjective theory, etc.; see Fine 1973; Gillies 1973)
as they apply to physical theory. I have developed this further elsewhere, with
more extensive discussion of irreversibility (Dougherty 1993).

Fortunately or unfortunately (depending on one’s interests) it now appears to
me that the formalisms are in fact equivalent. The remainder of this paper gives
an outline of the arguments leading to that conclusion, though these cannot
yet take the form of an unbroken, rigorous mathematical demonstration. In any
case, the dynamical system must be presumed to possess a sufficient degree of
stochasticity. (We use the word ‘stochasticity’ in a qualitative sense to suggest
irregular orbits, sensitivity to initial values, and so on; ‘instability’ could also have
been used. More precise concepts will be defined in §5.) The subject of proving
that particular dynamical systems, with a specified law of interaction, actually
are ergodic, mixing, etc., is still in its infancy. We note here that the Maxent
school would reject the relevance of stochasticity conditions, but we shall return
to that point in its place (§22).

2. Notation

Here we briefly set out notation to be used, most of it being standard. We
work with a classical hamiltonian many-body system consisting of N molecules
and write

X =(q,---qn,P1,-.-Pn), X €T (2.1)

for a phase point (microscopic state), in the phase space I' (where I' C R" for
some n), and let df2 = dg; ...dp; ... denote a volume element in I'. Integration
over I' will involve the usual Lebesgue measure.

Microscopic evolution is governed by hamiltonian equations, and although these
are of course immensely complicated and nonlinear, we appeal only to certain
general properties that they are known or assumed to have. We shall generally
assume here that the hamiltonian itself is time independent, so the equations
are autonomous. (Attempts to dispense with that assumption have been made
by some writers (e.g. Balescu & Misguich 1973; Jowett 1982; Coveney & George
1987).) All we need to state is that the solution of Hamilton’s equations has the
form

X(t) = ¢.X(0), (2.2)

where ¢, : I' — I is measure preserving and invertible with ¢, = ¢;¢s; ¢¢ is a

flow.

As is well known, if p is a function I' — R (or I' — C), the flow induces an

Phil. Trans. R. Soc. Lond. A (1994)
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264 J. P. Dougherty
evolution of the form

p(X,1) = p (6 4(X),0). (2.3)
This may be written

p(X,t) = U(t)p(X,0), (2.4)

where U(t) is a linear, real operator, with U(¢t + s) = U(¢t)U(s) and U(0) = I.
The measure-preserving property of ¢; gives p the character of a density on I'
which remains constant when convected with the flow. From this it follows that
if the following conditions hold at one time, say ¢t =0

positivity: p(X) =20, (2.5)
normalization: / pdf) =1, (2.6)
Jr

they hold at all times. If so, p may be regarded as a probability density on I'
that evolves with time, and is the Liouville function. We can say this without
prejudice to any choice of the philosophical interpretation of probability.

In practice, the enormous number of variables comprising X, as in (2.1), refer
to numerous particles of a few chemical species, in which case the hamiltonian
is symmetric to interchanges of like particles, as also is U. Although p need not
be symmetric to such interchanges of like particles, if it is symmetric at ¢ = 0
that symmetry is also preserved. As only the symmetric part has macroscopic
significance, one usually restricts attention to symmetric solutions. (This applies
even in classical mechanics; the symmetry conditions are of course built into the
quantum case automatically.)

Equation (2.4) is itself the solution of a linear first-order partial differential
equation, Liouville’s equation, whose characteristics are the original orbits, (2.2).
The coefficients of Liouville’s equation follow from the original hamiltonian equa-
tions, but we shall write the equation formally

b= Lp, (2.7)

where L is the liouvillian. As we are assuming that hamiltonian is time indepen-
dent, so is the liouvillian. We then have a formal solution as in (2.4), with

U(t) = exp(Lt). (2.8)

If the conditions (2.5) and (2.6) are imposed, solutions do not form a vector
space. It is often helpful to consider (2.7) in the more general setting in which
we allow p to lie in a function space, E, which may also be complex. The choice
of E is considered below in §4. There is no difficulty about incorporating (or
leaving out) the restriction of symmetry mentioned above. Then the liouvillian L
is an unbounded operator, while U is a unitary operator. (Some writers define L
so that an extra factor i appears in (2.7) and (2.8) to emphasize this last point.)
This generalization enables the use of methods of functional analysis, such as
spectral theory. The temporary suspension of (2.5) need not cause concern, since
the Liouville equation preserves positivity. All will be well in applications since
the set of non-negative solutions separates out from the generality of solutions,
and the initial conditions will reimpose the positivity.

In the mathematical literature, the definition of U formed by equations (2.3)
and (2.4) has the opposite sign convention, as obtained by replacing ¢_, by ¢, on

Phil. Trans. R. Soc. Lond. A (1994)
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Foundations of non-equilibrium statistical mechanics 265

the right-hand side of (2.3); this follows the choice made in the pioneering paper
of Koopman (1931). The two versions of U that result are merely adjoints of each
other and have identical properties in the present context. We have preferred the
physicist’s choice that makes U the operator of Liouville’s equation for the future
time. The book by Lasota & Mackay (1985) uses both operators, referred to with
the names ‘Koopman’ and ‘Frobenius—Perrin’, respectively.

Although a completed theory of this subject would only need to refer to con-
tinuous time, we shall often refer to results from ergodic theory in the simpler
context of discrete time, so t € Z.

3. Observables

The introduction of a probability density (or measure) in the previous section
enables us to compute means of random variables, or, in physicists’ terminology,
expectation values of observables. The choice of such observables needs careful
consideration.

It will always be assumed that an observable is invariant with respect to per-
mutations of like particles. This rules out observations that would purport to
identify individual particles.

An elementary form of observable is one which is given by a real scalar function
a(X), so it could, in principle, be computed whenever the microscopic state is
exactly known: it just depends on the positions and momenta of all the particles.
We can then form the mean,

(a) = /F a(X)p(X, 1) d . (3.1)

We shall always assume that the prescription of a(X) is not explicitly time
dependent, so (a) can vary with time only if p does. The same applies to the
more general observables to be introduced shortly. Removal of this limitation at
some stage may be desirable, but is not attempted here.

Elementary examples of observables are the ones that appear in equilibrium,
such as the total energy (i.e. the hamiltonian), momentum, magnetic moment.
The normalization (2.6) is merely the statement (1) = 1. Generally there is a set
{ar} to which (3.1) applies, with values lying in a vector space A. Then, with
p € E, the notion of ‘observation’ corresponds to a linear map F — A that is
expressed by a kernel a;(X), using (3.1).

In NESM, a somewhat more general form of observable is required to express the
variables commonly used in theories of media. The point can be illustrated by the
case of a gas composed of a single species of particles, so that X denotes the set
{x1,Zy,... 2N}, z; being the hamiltonian variables (g;, p;) for the ith molecule. A
possible choice for an observable is the one-particle distribution function,

f(z) = /p(x,xg,xg...xN) dzodzs ... dzy, (3.2)

where z is a new free variable similar in form to the z;. In (3.2) the apparent
asymmetry in the treatment of z; in contrast to z,,z3... is not an objection
owing to the symmetry of p; the expression could easily by symmetrized at the
cost of a more clumsy form. Equation (3.2) can also be written in a way formally
analogous to (3.1) provided the delta function 6(x — ;) is permitted in the kernel
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266 J. P. Dougherty

(the latter is then what plasma physicists call the Klimontovich function). There
are similar two-particle and higher distribution functions which can in turn be re-
expressed as correlation functions (Balescu 1975; Clemmow & Dougherty 1990).
The outcome of this is that our observables still take the form of a linear map
M : E — A though in this example A is now a function space, containing the
functions f(z), and the map is no longer represented by a continuous kernel.

We shall take it quite generally that observation, or measurement, is specified
by a linear map M : E — A, and so write

Mp = a. (3.3)

For the present, the only formal statement we make about it is that it is non-
invertible, so that a member of A does not imply a unique member of E. There
is a sense in which A is very much ‘smaller’ than F, representing the loss of
microscopic information. F is determined by physics, whereas M is at the choice
of physicists, and results in the reduced description of the system expressed by
members of A.

We comment later (§19) on the manner in which nonlinearity can reappear in
macroscopic physics.

4. Use of densities

Our objective is a general theory, with associated methodology, showing the
source of broad features of NESM, notably irreversibility. The required general-
ity seems inevitably to be lost as soon as the details of particular hamiltonians
or interactions are introduced. One recognizes, of course that eventually those
details must be acted upon, and that therein lies the origin of the remarkable
variety found in the properties of matter. But for the present we need to abstract
from hamiltonian mechanics rather general, perhaps qualitative, properties as our
starting point.

We remark that NESM does not apply to all systems, the exceptions being very
simple systems. Examples are the simple pendulum and the two-body problem (as
solved by Newton for the inverse square law). These are characterized by being in-
tegrable, with the result that both prediction and retrodiction are mathematically
possible (as in eclipses), and there is no symmetry breaking with respect to time.
So the properties we are looking for must fail in the case of simple systems. This
points naturally to properties of non-integrable systems that are associated with
ergodic theory, chaos, sensitivity to initial conditions, and so on. First, we make
use of such measurable invariants of the motion as may exist (usually comprising
only the energy). Let ¥ C I' be a submanifold of I" defined by specified values of
the invariants. Then within X the motion is to be characterized in some way as
chaotic. In other words it is determinate but not, in the long term, predictable.

The mathematical content of the previous assertion is that the initial value
problem for such a dynamical system complies with the conditions for existence
and uniqueness, but that solutions are unstable (although continuous) with re-
spect to small changes in initial values. The equations for the evolution of the re-
duced description which are the object of NESM will in general be partial differen-
tial equations. For them, the standard Poincaré conditions (existence, uniqueness
and continuity with respect to initial data) would define a well-posed problem.
To be useful, these evolution equations need to be well-posed, at least for posi-
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tive time and at least for some ranges of parameters (failure in the latter respect
would be interpreted as ‘turbulence’). Our question is how to achieve such reduc-
tions. Success supplies the physicist with the means to make predictions. These
cannot be perfectly reliable, however. The reason for that is that the underlying
microscopic dynamical system remains capable of pursuing motions not repre-
sentable by the reduced description, as is obvious from the fact that the time
reversal of any motion is microscopically possible. Any such non-predicted event
is termed a fluctuation; for a large system, appreciable fluctuations are supposed
to be non-generic, or highly unlikely. This is how probability arises. To carry out
the reduction, we must search for mathematical structure that enables the ex-
clusion of what is non-generic. The natural candidate for this is measure theory;
the idea is that the unlikely events have very small measure, tending to zero in
the limit of large systems. Adopting this means that dynamics is converted to a
consideration of densities, and, as we have already anticipated in §3, that is our
approach in the present paper. The text of Lasota & Mackey (1985) provides an
excellent source for the theory of densities as it applies to dynamical systems.

We mention in passing that other possibilities exist. Topology also supplies a
concept (Baire category) for distinguishing generic from non-generic, which is not
equivalent to measure, and one might follow the route of topological dynamics
(Brown 1976). Since we always operate in subsets of R”, one can in fact draw
freely upon both measure-theoretic and topological ideas. Algorithmic complexity
has been invoked (Ford 1983; Zeldovich et al. 1990, p. 303), although it remains
unclear how it would be applied. The possible role of information theory is dis-
cussed below. It may be that other notions still to be invented by mathematicians
of the future will provide a better approach, but for the present we continue along
the route already trodden by most writers, namely that of densities. Further ar-
guments in favour of the measure-theoretic approach, and its connection with
observation, may be found in Goldstein & Penrose (1981).

The mathematical structure underlying the treatment of the dynamical system
by densities thus consists of {I', B, u, ¢}, where B is the family of measurable
subsets, p is the measure, i.e. the standard Lebesgue measure in R", and ¢ the
measure-preserving map. When we apply the restriction to a submanifold X, as
described above, there is a further technicality involved, as the measure has to be
converted into a lower-dimensional one (introducing a jacobian factor) and the
appropriate family of subsets of X should be defined; by an abuse of notation we
will continue to designate these by x and B respectively. A second measure, v,
on B specifies the weight (i.e. ‘probability’) to be ascribed to the presence of the
system in any B € B. Provided v is non-singular (v(B) = 0 whenever p(A4) = 0)
we can, by the Radon-Nikodym theorem, write

dv = p(X) du, (4.1)

where p is the density already introduced. One could allow for singular measures
v, so that a single point can have a non-zero probability, by letting p include
delta-functions. In fact, we shall exclude that possibility, and in doing so we are
making a fundamental assumption about the process of observation, which is
inherent in the adoption of the measure theoretic approach (Goldstein & Penrose
1981): precise measurement of the values of the ¢gs and ps to be attached to an
event is impossible. For the same reason, we adopt the usual convention of ergodic
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theory that statements concerning sets (e.g. B C C) are regarded as true if they
are true with the exception of sets of measure zero.

The interpretation of p as a non-singular measure implies that the function
space E should be of the Lebesgue class L,

p€ Ly(I') or LX), (4.2)

as the case may demand. In practice, owing to the extensive involvement with
spectral theory, we usually work in Hilbert space, in which case L, is replaced

5. Levels of stochasticity

Ergodic theory has led to the formulation of seven ‘levels’ of stochasticity that
can be attained by an invertible measure-preserving map ¢; there are similar
considerations in the case of flows, ¢;. The levels are, in ascending order of strin-
gency, (a) quasi-ergodic (or ‘minimal’); (b) ergodic; (¢) weak mixing; (d) mix-
ing (or ‘strong mixing’); (e) countable Lebesgue spectrum; (f) K-systems; (g)
Bernoulli systems.

We review them briefly. Firstly, (a) differs from the others in being a topological
property, namely that {¢"(z) : n € Z} is dense in the manifold, so an orbit
eventually reaches any open set. This expresses the idea that the orbits are not
confined to any submanifold of lower dimension. It is of some historical interest
as it can be traced back to Boltzmann’s (incorrect) conjecture that (in the case
of a flow) the orbit would be a space-filling curve. It will not concern us further.

Levels (b)—(g) work in the environment of measure theory and the associated
spectral theory.

Level (b) articulates, in terms of measure theory, the same idea as (a). A
measurable set B C X is invariant under ¢ if ¢(B) = B. ¢ is ergodic if the only
invariant sets are X itself and the null set. There are then no non-trivial subsets
of ¥ into which individual orbits can be confined.

Levels (a) and (b) do not imply rapid separation of a bundle of initially close
orbits. That idea is expressed by a condition of the form,

pw(ANg¢™(B)) —» u(A)u(B) as n— oo, VABEB. (5.1)

A mizing system (level (d)) is defined by (5.1), the limit sign having its usual
meaning. A weak mizing system (level (c)) is similarly defined, but the limit is
in a weaker, Cesaro, sense. The somewhat technical distinction between the two
will not be important here. The meaning of (5.1) can be understood by taking
B to be a small set, representing the physicist’s ‘error bars’ associated with the
initial data at n = 0. For large n, the new position ¢"(B) is so widely and
uniformly dispersed that the probability of finding the system in an observed set
A is independent of the positions of either A or B, being merely proportional to
their volumes. To put it in still another way, the information provided at n =0
has become useless. The concept is a precise expression of the idea put forward
intuitively by Gibbs concerning the spread of a drop of ink into a large volume
of water, due to stirring.

It will be convenient to return to level (e) a little later. Meanwhile level (f),
introduced by Kolmogorov, depends on the concept of a sub-algebra, say A, of
the algebra of measurable sets B. This is simply a family of sets, belonging to
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B, that is itself closed under union and intersection. We can then define the
union of two such subalgebras A®) U.A® as the smallest subalgebra containing
all members of both, while the intersection A® N A®? is the largest subalgebra
common to them both. We then consider the action of ¢ on such a subalgebra,
¢ (A) = {$(A) : A € A}, which is itself a subalgebra. The characterization of a
K-system is the requirement that a subalgebra A shall exist satisfying

fj ¢"(A) =B and D 6" (A) = N, (5.2)

n=—oo n=—oo

N being the ‘trivial’ subalgebra containing only the sets of measure 1 or 0. (The
definition also requires ¢ to be invertible, as we are assuming throughout; recall
also that sets differing only in zero measure are identified.) Roughly speaking, ¢
churns up the subsets to such an extent that any measurable set can eventually
be reached. A well-known example is the Baker transformation.

Level (g) provides a way to characterize a dynamical system as being ‘com-
pletely random’. This is the case if a partition of I" into disjoint subsets (which a
physicist might call ‘cells’) exists such that the progression of the system through
the cells reveals no correlation with respect to time. We omit detailed specifica-
tion or discussion of this property, since it is too strong to play a useful part in
NESM. Our list includes it only for completeness.

So far we have discussed the levels of stochasticity in terms of the properties of
¢ itself. If we are to describe observations by means of densities, we ask whether
these properties are reflected in useful and easily recognised features of U or L.
As p evolves according to

p(t) =U'p(0), teZ (discrete time) } 53
p(t) =U(t)p(0), where U(t) =exp(Lt) (continuous time) (5:3)

it is natural to investigate the spectrum of U. This implies that we adopt the
Hilbert space model, p € Ly(X). As U is unitary, its spectrum lies on the unit
circle [A\| = 1. In any event p = constant is an eigenfunction with A = 1.

From the rather large literature on this subject we select a few results for
reference. They are discussed here in the discrete-time model.

¢ is ergodic if and only if the eigenvalue A\ = 1 is simple. (This does not rule out
the possible existence of other eigenvalues on |[A| = 1 : if they exist they are also
simple, and form a multiplicative group; their eigenfunctions are not constant
but have constant modulus.)

As ergodicity is the lowest level of stochasticity to be considered, the previous
condition will always apply, and it is convenient to factor out the simple eigenvalue
at A = 1 by working with the restriction of U to E+, which consists of functions
that are orthogonal to the constants, i.e. functions having zero mean.

¢ is weak mizing if and only if U has a continuous spectrum in E*, i.e. it has
no further eigenvalues.

The properties of being (strong) mixing and K-systems are also spectral in-
variants, but there do not appear to be transparent statements about the spec-
trum analogous to the preceding. Our property (e) is a spectral characterization
that does not correspond to a simply expressed statement about ¢ itself. We
assume that U has the above property equivalent to weak mixing. If now there
exists a sequence of L, functions {f;},7 =0,1,2,..., with f, = const., such that
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{foyu{U"f;: (j =2 1,n € Z)} forms an orthonormal base, then ¢ is said to have
a countable Lebesgue spectrum. (The functions, other than fy, forming the base
are of course not eigenfunctions.)

It is known that each of the properties (a)-(g) implies its predecessor. The
converse is in each case false, a fact that is in most cases not easy to show;
this has been achieved by ingenious counter-examples. Details of these results
are given in standard texts on ergodic theory (Cornfeld et al. 1981; Mané 1989;
Peterson 1983; Parry 1981; Walters 1982).

6. Decomposition of function space

We return to the idea, introduced in §3, of the linear map M : E — A that
represents measurement. The discarding of information by the map implies that
it has a non-trivial kernel (null-space) which we write as

E, =ker(M)={p: Mp=0}. (6.1)

If a € A is a physically possible observation, and the condition M p = a is satisfied
by some p = p;, then it is also satisfied by p = p; + p; for any p; € F,. The ques-
tion is how, in the context of this ambiguity, to make progress with calculations
concerning the evolution of p(¢) and hence of a(t). The following summarizes a
general idea which underlies both the Brussels school and, subject to some mod-
ification, the work of Zubarev. It can also be conceived as generalizing the earlier
methods mentioned in §1. We put it forward initially in a form appropriate to
the Brussels school.

A particular manifold £ C FE is chosen, with the property that, for a € A there
is a unique solution of Mp = a with p € &; we call this p = p;. We can think
of this as a preferred choice, or perhaps a first estimate, of the p to correspond
to that value of a. Figure 1 shows this schematically: the vertical direction repre-
sents the ‘unwanted’ information in F5, while the horizontal denotes the ‘wanted’
information specified by a; both directions actually denote infinitely many di-
mensions, and our showing them at right angles is purely for the convenience of
the draughtsman. The use of a script letter reminds us that £, is not necessarily
a linear space. We now have a unique decomposition of any p:

p=p1+p with p, €&, ps€E,. (6.2)

There is then a map P : E — &, which discards p,, so Pp = p;. The result is a
‘projection’ onto &£, but if £, is not a vector subspace P is nonlinear so is not a
projection operator in the sense of the usual definition. It has the obvious property
(sometimes called idempotent), that repeated applications have no further effect,
so P2 ="P.

The above (so far purely formal) step has now to be combined with Liouville’s
equation. It will only be of value if it enables schemes for the solutions of the
equation to the extent of providing the evolution a(t); the essence of such schemes
must be the elimination of p,, or at least the removal or minimization of the effect
of p, in some way to be made precise. Immediate elimination of p, would occur
only if P commutes with L (or with U), for in that exceptional case p; stays in
&1, while p, evolves independently and gives rise to no observed effect. It could
therefore be made zero. The problem of NESM could then be justifiably be said
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Figure 1. Decomposition of function space for solutions of the Liouville equation.

to have been solved: we would have identified an invariant set & C E capable of
answering all questions about the system at the level M.

In practice, no such & is obvious, so the only approach available appears to be
that of making an initial choice of £ and then performing formal manipulations
in the hope of refining that choice. When looked at thus, the differences between
the two schools (Brussels and Maxent) referred to in §1 can be traced in part to
the very different initial choices made in that respect, although there are other
differences.

The Brussels school make the choice that is clearly a natural one to try, namely
that &, should be a linear manifold, i.e. a vector subspace of E. We shall then
denote it by the symbol F,, and P becomes a projection which we denote by P.
We can then introduce the complementary projection @ : E — Ej by

Q=I1—-P (6.3)
and we can write

It is elementary to show that P> = P, Q* = Q, PQ = 0.

(To avoid confusion of notation, it should be emphasized that our function
space E does not, a priori, possess an inner product, so (6.4) does not imply
that F, and FE, are orthogonal. If we choose F to be L,, i.e. Hilbert space,
a concept of orthogonality, unrelated to the role of the functions as probability
densities, is present from the start. In Hilbert space (although not in other Banach
spaces) there is a convention that ‘projection’ means ‘orthogonal projection’ (as
it is convenient for projections to be self-adjoint (see, for example, Lorch 1962,
p. 72)), but here we wish to suspend that convention, adding explicitly the word
‘orthogonal’ if it applies. Note that papers of the Brussels school generally adopt
the usual convention. A writer who is conscious of the need to translate the theory
into quantum mechanics naturally adopts Hilbert space terminology.)

The ‘refinement’ of the choice of projection to reach the idea of subdynamics
is achieved by a consideration of asymptotic analysis, with the aim of giving the
best representation of the long-term evolution. This development occupies most
of §§7-11.

The work of Zubarev uses ‘quasi-canonical’ distributions, meaning those which
are similar in form to equilibrium distributions while providing the correct data
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a(t). These can also be characterized as those which maximize entropy subject to
the value of a(t), hence the connection with the Maxent school. These distribu-
tions form a manifold £, which can be adopted as an initial choice for &£;. That
task involves nonlinear transformations and other modifications, and is much less
transparent than for the Brussels case outlined above, see § 13 below (the origi-
nators of those results arrive at them via different routes). This development as
a whole occupies §§12-17.

7. The master equation

We start with a formal calculation which provides useful background for the
work of both ‘schools’. The presentation is (like most of what follows) exploratory
in style, as rigorous details are still incomplete. We also work non-perturbatively,
as this seems essential if general principles are to be kept clear, while recognizing
that perturbation expansions, etc., are unavoidable in applications, and that the
form they take is itself an important theoretical topic.

In the present section we can temporarily dispense with the assumption that
L is time-independent with only slight inconvenience, but the projections P and
@ remain time-independent. We consider the inhomogeneous Liouville equation

{0/0t —L(t)}p=hé(t—t'),he€ E, p(t)=0 for t<t (7.1)
with solution
p(t) = G(t,t') h,

where G : E — F is the causal Green’s operator, and vanishes for ¢ < t'. From
this we can obtain the solution of the general initial value problem

{0/0t — L}p = h(t), p(to) =po

in the form
t

p(t) =G (tto)po+ | GUEVR({E) Y  (t>t). (7.2)

to

Now use the decomposition p; = Pp € E;, p» = Qp € E, so that the Liouville
equation p = Lp becomes, in ‘matrix’ form

(G)=(n ) 3

where L;; : E; — E; are obtained from L by equations like L;; = PLQ, etc. Of
these, Li; and L,y map between like spaces, and we denote their causal Green’s
operators by Gy; (t,t'), Gaa (t,t'), while L1, and Ly; map between unlike spaces
and do not possess Green’s operators. We now have

(0/0t — L11) p1 = L2po, (7.4)

((9/815 - Lzz) P2 = L21,01. (75)

If Ly, =0, p, is not needed in computing p;, corresponding to the trivial case
where the ‘unwanted’ information is decoupled, so we now assume L5 # 0, and
solve (7.5) for po, regarding p; as known and taking ¢, = 0 in the analogue of
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(7.2):

t
pz(t) = ng(t, 0)p2(0) + A G22 (t, t/) L21 (tl) P1 (tl) dt/
Substituting this into (7.4):

{% - Ln(t)} p1(t) = D(t,0)p2(0) + /Ot Y (t, 1) po (t) dt'. (7.6)
Here
D (t,t') = L12(t)Ga2 (8, 1) Y (1) = Lia(t)Gas (t, 1) Loy (') - (7.7)

This is the master equation. Note that p, has not been completely eliminated,
but appears only in the first term, as p,(0). But the price paid for this is that
p1 appears in a more complicated way in (7.6) than it did in (7.4) since p; at
earlier times than ¢ is required, and we have an integro-differential equation.
The phrases ‘non-markovian’ or ‘system with memory’ are used. The connection
with the theory of stochastic processes originates from the right-hand side of
(7.6) which appears to contain ‘random’ influences due to p,, which is within
the ‘discarded’ information. (The term ‘master equation’ is used only in a broad,
generic, sense.)

Suppose now that we find, as the result of a carefully chosen P, that D (¢,t')
decreases rapidly as ¢t — t’ increases (although this would be difficult to demon-
strate). The same would presumably be true of ¢ (¢,t'). Then the initial value
term in (7.6) is a ‘transient’, which disappears after a short time, and in the
integral only recent contributions (¢ — ¢’ small) are appreciable. If so, the system
quickly ‘forgets’ p,(0) and (7.6) becomes approximately markovian.

This idea is referred to as the hypothesis of rapid decay. If valid, it achieves the
desired separation of p; and p,, although retaining influences from p,. It provides
the generalization of earlier ideas due to Boltzmann, and later due to Bogoli-
ubov, referred to earlier. In Bogoliubov’s work on the kinetic theory of gases, the
one-particle distribution function is designated as the ‘wanted’ descriptor, and
the higher distributions are conjectured to reach very rapidly an ‘asymptotic’
state which is then maintained evolving adiabatically as the one-particle function
evolves. That idea, taken literally, would imply that we solve (7.5) by deleting
the 0/0t term, so py = —Lay Lo1p1, whence (7.4) gives

8,01/8t = (Lll - L12L2_21L21) P1-. (78)

This in fact oversimplifies Bogoliubov’s method; moreover (in any context) it
would not lead to irreversibility.

A less drastic implementation of the hypothesis of rapid decay is to treat (7.6)
as follows. We omit the term D(t,0)p2(0) but retain the integral term; in that
form the equation would treat the time ¢t = 0 preferentially, whereas our aim is
to deduce a general evolution equation for p;. To remove the special role of t = 0

we replace the lower limit of integration with ¢ = —oo, with error similar to that
already involved with p,(0). The result is (setting ¢t =t — 7)
0 [ee]
(E - Lu) pr() = /»_ W(t,t— T)pu(t — 1) dr. (7.9)

In this form, provided the integral converges (i.e. ‘memory’ of past events is
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finally lost), (7.9) involves no approximation; a solution p;(t) of this, with its
accompanying p,(t), would be proposed as the best way to predict a(t) in the
circumstances of the problem. The resulting set of ‘trajectories’ through E of form
p = p1+p, comprise the ‘refined’ £; discussed earlier. But it is obviously extremely
awkward to manage in practice, and to supply the solution corresponding to a
given a(0).

8. Subdynamics

In describing this we shall revert to our usual situation in which L is supposed
to be time-independent. In this case, the Green’s operators that appeared in
the previous section as functions of ¢,t become functions of ¢ — ¢’ only, and
the integrals become convolutions. It then becomes very convenient to use the
Laplace transform and we can proceed further than before. So we define Laplace
transforms

o) = [ o
and the Liouville equation for ¢ > 0 transforms to

(p— L) p(p) = p(0).
The formal solution, transformed back by means of the Bromwich contour, is

1 -
p(t) = 5 [ (= L)' dpp(0) = U($)p(0),
T Jc
where C' is a vertical contour to the right of all singularities. Here U(t) means the
same as previously, (2.8), and takes the place of G (¢,t'), so we have the formulae

Up) = (- 1), U0 =0 = 5 [(0-L) e, (81)
2mi C
6(t) being the Heaviside function. We ask whether the result could be obtained by
direct evaluation of the integral. We note that the singularities of the integrand
are, by definition, the spectrum of L. If we assume that our dynamical system is at
least weak-mixing, and if we work in E+ (discarding the constant solution) then
we know from §5 that the spectrum is purely continuous and lies on R(p) = 0.
So C may be put infinitesimally to the right of the imaginary axis. It cannot
be closed in the left half-plane as it may not cross the spectral set. The method
succeeds if the integral nevertheless converges, and as ¢t — oo the resulting p
displays no oscillatory terms, in fact p — 0. These points are possible because of
the absence of a discrete spectrum and p being non-singular; a physicist would
describe it as ‘phase-mixing’. A rigorous treatment of the above steps requires
the Hille-Yosida theorem in the theory of semigroups of linear operators, see
Goldstein (1985), especially p. 17.
To develop subdynamics we proceed similarly, and take the Laplace transform
of equations (7.3) to get

P ) (@)= (08): 52

(Here, where p appears, it should strictly be multiplying an identity operator
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P — P or Q — @ as the case may be, but we hope that we may omit these and
similar ones without causing confusion).

The elimination to solve for p;(p), p2(p) is elementary provided the ordering of
the terms is preserved, giving in turn

pr=(p— La)" {p2(0) + Lo}, (8.3)

{p — Ly — Ly, (p - Lzz)—l L21}ﬁ1 = 1)1(0) + Ly, (P - L22)_1 /)2(0)~ (8~4)
This is just the Laplace transform of the master equation (7.6), and we rewrite
it using abbreviations,

7J’(p) = Ly (P - Lzz)_l Ly, b(p) = L1y (p - Lzz)_l ’ }
. (8.5)

Clp)=(p- Lzz)_l Ly, 011(19) = {P — Ly — l/;(l))}_l )

to give
p1 = U11(p1(0) + Dps(0)). (8.6)
Referring back to (8.3) one can compute p,, and the eventual result is
(él(p)) _( Un (7111[7 o (01(0)) (8.7)
pZ(p) CUH (p — ng)_ + CUHD f)Z(O) ’ ’

The notation used here loses sight of the symmetry between 1 and 2, but is
convenient in the context of our aims; note that ¢ and D have a similar role to
the corresponding symbols in (7.7).

Attention is now directed to the operator Uy (p) : Ey — E; referred to as the
partial resolvent associated with the original L and with P. When inverting the
Laplace transforms, it is the singularities of this that will make contributions to
the Bromwich integral. To find them one must consider the eigenvalue problem,

{p — Ly — 7;(19)} pr=0, p1€E, (8.8)

in which p enters nonlinearly, unlike the familiar case. The operator has no par-
ticular symmetry (such as hermiticity, etc.) so the eigenvalues might appear any-
where and there might be a continuous spectrum. There have been extensive
investigations of this using the powerful mathematics of spectral deformation
(Courbage 1982 a, b, 1986; Obcemea & Brandas 1983), although these have not
closed the matter. It seems likely, however, that there are circumstances where
(8.8) gives rise to a discrete spectrum, in such a way that the left- and right-
eigenvectors are complete in Fj, the eigenvalues being in R(p) < 0, indicating
decay, i.e. approach to equilibrium. The most slowly decaying modes would pro-
vide the asymptotic behaviour of the system for large ¢. By rather lengthy alge-
braic manipulations, not reproduced here, it is possible to show how, in that case,
one can construct formally a new, non-orthogonal, projection II : E — E which
can replace P, and such that II(F) contains the above solutions in F; together
with their accompanying p,. The range of I — IT then contains the remaining
contributions to py. Apart from possible initial transients, this offers a solution
to the programme we envisaged in §6, as depicted schematically in figure 2, in
which IT is deliberately drawn at a general angle to the original axes. We have
thus reached, by a different route, the ‘refinement’, IT, of P. Balescu (1974) gives
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Ep

IT- subspace
p(1)

Ey

Figure 2. The idea of subdynamics.

explicit demonstrations that IT? = II and LII = IIL. But these results must be
equivalent to those obtained in the previous section, equation {7.9): the replace-
ment of the lower limit of integration with —oo corresponds to the discarding of
the more rapidly decaying modes. The two developments are of course related
merely by Laplace transformation (after noting that in the present section we
have restricted the work to the case of a time-independent liouvillian).

The previous paragraph does not do justice to the sophistication of the material
summarized, but to the non-specialist this work can be conceived to be essentially
an elaborate justification of the use of the hypothesis of rapid decay, and hence
the use of (7.9). The decay occurs, at the selected level of description M, since the
poles of the partidl resolvent are indeed such as to imply decay, and the timescale
appropriate for that level can be estimated from the smallest value of —R(p) that
occurs.

Although subdynamics has generated a large literature, it remains the case
that little is known about the mathematical conditions required for its validity
(if indeed it is ever valid!). Early investigations in the quantum case were reported
by Lanz et al. (1971), and references contained there. A recent paper of Coveney
& Penrose (1992) offers another line of investigation.

9. Comments on subdynamics

The first question that will naturally be asked is that of the origin of irreversibil-
ity, given that the original hamiltonian equations were reversible. The mathemat-
ical origin lies in the use of the Laplace transform for an initial-value problem,
together with the treatment of Uy, (p) which is defined initially in R(p) > 0 and
is continued analytically to R(p) < 0 to search for its poles. The resulting de-
formations in contours lead to the asymmetric handling of time, and can also be
mimicked by the insertion of convergence factors of the form exp(+e) or exp(=ie)
as is common in other fields like scattering theory, and as we do here in §13. One
can see this working in a simple context in the derivation of the retarded potential
by the use of transform methods, leading to the choice of the ‘causal’ solution.
A more subtle example which makes a closer comparison with subdynamics is
that of Landau damping in plasma physics. In that problem, an observer who
can only detect the electric field of the wave inevitably sees it decay, although if
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he could observe the details of the electron distribution, he would see a continu-
ous spectrum of motions that do not decay. See Crawford & Hislop (1989) for a
development of this in the context of spectral deformation theory.

The eventual decay of that part of p;, with its accompanying p,, that denotes
departure from equilibrium, is reflected in a similar approach to equilibrium on
the part of a(t), suggesting the the equations of motion for a(t) derived by this
means will comply with the third condition for a well-posed problem, as we wanted
in §4.

The implementation of the theory in the form of practical calculations is found,
not surprisingly, to be very laborious. Here, the text of Balescu (1975), which
contains very extensive developments, should be consulted. His approach is, how-
ever, entirely perturbation-theoretic, with the unperturbed case being that of
zero interaction potential, thus following the Mayer expansion of equilibrium sta-
tistical mechanics. The projection P is that which reduces the description to the
one-particle distribution. The calculations are carried out with widespread use of
diagram techniques, thereby making another agreeable historical connection with
Mayer, who originated those techniques.

10. Entropy in NESM

So far, we have not mentioned entropy in our explanation of subdynamics, and
indeed any practical calculations could proceed without consideration of entropy.
But it is natural to ask whether some variable or functional can be identified as
‘entropy’. One would expect it to coincide with the ordinary meaning of entropy
in equilibrium statistical mechanics and thermodynamics, to be additive in the
case of disjoint systems, and of course to comply with the law of increasing
entropy, or second law of thermodynamics. This is a subject liable to the utmost
confusion, as writers use the word entropy to mean different things (information
entropy, Gibbs entropy, Boltzmann entropy, Kolmogorov entropy, ....). The first
two conditions (equilibrium value and additivity) point strongly to the use of the
Gibbs entropy

Sclpl = —/Fplnde (10.1)

(we set Boltzmann’s constant equal to 1 for convenience). This fails to give the
third condition, for as is well known, S as given by (10.1) is invariant. In fact,
any functional of the form

Slel = [ h(p) e (10.2)

is invariant, as an immediate consequence of the measure-preserving property of
the flow, h being any measurable function.

The decomposition of phase space offers an escape from this difficulty, as we
could define S so as to involve p; and p, in different ways, so it ceases to be a
functional expressible in the form (10.2), and we may be able to comply with all
three of the above conditions. The physicist should be satisfied if S(¢) is given as a
functional of a(t). Such an entropy could perhaps be called an ‘observed entropy’,
though I hesitate to contribute to a yet further confusion of nomenclature! If we
accept this approach, observed entropy for a non-equilibrium state cannot be
computed from a knowledge of the hamiltonian together with the distribution
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function p. Its computation requires a choice of the level of observation, M,
and consideration of the projection P or more generally P. But within an actual
application of these methods, it should be computable (in principle) to any desired
degree of accuracy for any non-equilibrium state.

Unfortunately, the words ‘objective’ and ‘subjective’ have been used to contrast
an expression such as (10.2) and an ‘observed entropy’ as described here. This has
led to a somewhat acrimonious but confusing debate, which has been helpfully
clarified by Denbigh & Denbigh (1985). My own view is that it is inevitable
that a concept along the lines of the previous paragraph is required for non-
equilibrium entropy. At one extreme, that of a complete microscopic description,
entropy disappears (along with irreversibility), while at the other extreme, that
of equilibrium states, where the invariants of the motion comprise the only data,
Sq is appropriate but constant. Between these extremes, i.e. in the domain of
NESM, all theory is constructed in a way that inherently involves the level of
description. As expressions like (10.2) do not work, we need not be surprised
that the construction of entropy similarly involves the level of description. This
is reinforced by recalling that the introduction of irreversibility itself required
considerable technical subtlety and involved the level of description in a detailed
way.

11. Further developments of subdynamics

The idea promoted by the Brussels school for the definition of non-equilibrium
entropy is to introduce an invertible operator A : F — E satisfying

II = APA™? (11.1)

exhibiting the similarity relation between P and II. Then a new representative
pp(t) € E (the ‘physical representation’) is defined by

pp = A" 1p. (11.2)
Finally, it is claimed that

JAR (11.3)

is a decreasing function, and serves as a Lyapunov functional for the evolution
of the system; its negative could therefore be used to define an entropy. For
more details, Prigogine et al. (1977) should be consulted. Although this may
indeed qualify as an ‘observed entropy’ as described above, it has not been widely
accepted; it should be noted that this procedure is not included in Balescu (1975).
More generally, (11.3) could be replaced by any concave functional, so such an
entropy is not unique.

In further developments, members of the Brussels school, with others (Misra
1978; Misra et al. 1979) have sought to detach the consideration of the Lyapunov
functional from the choice of the level of observation. The more abstract question
is asked: given a liouvillian L is it possible to find a A such that if p, is defined as
in (11.2), then the resulting evolution equation for p, has (11.3) as a Lyapunov
functional. Still more generally, is it possible to find such a transformation with
the result that p, evolves in the manner of a Markov process, i.e. forms a Markov
semi-group. Necessary and sufficient conditions for this to happen are derived,
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which turn out to be similar to what we designated as level (e) in § 5 above. These
investigations are of interest as they ask about properties of L alone under which
NESM can succeed. However, the claim that such a theory is superior, for not
discussing the discarding of information, seems to me to be misplaced: the level
of description is an essential attribute to any calculation of NESM. There is also
the point that the transformation to the Markov semi-group cannot be what is
required in every case as it does not encompass the behaviour of some materials
whose evolution depends on previous history, while the master equation can do
S0.

These considerations have also led to the introduction of what has been called
an ‘internal time operator’. We offer more comments on this in §20 below.

12. The quasi-canonical distribution

We now turn to the investigation of the Zubarev and Maxent approaches to
NESM. In this section we put forward a definition which will be used extensively
in the sequel. Its purpose is to provide a choice of p to serve as the ‘opening’
p1 € & introduced in §6. We have to satisfy the normalization

/ pdQ2 =1 (12.1)
r
and, given the map M : E — A and a vector-valued a € A, to satisfy
Mp = a. (12.2)
Suppose now that a functional of the form (10.2) is specified by
Slel = [ h(p) a2, (12.3)

where now h is twice differentiable, and the rule for selecting the preferred p is
- that it should maximize (12.3) subject to (12.1) and (12.2). We will take it (cf.
the discussion in §3) that (12.2) is in fact of the form of an integral over I" with a
suitable kernel (also written M ); then a straightforward application of Lagrange’s
undetermined multipliers gives

R (p) = co + MM, (12.4)

where ¢y € R is the multiplier for (12.1), and X is the multiplier for (12.2), so
technically ) is in the space dual to A. The inner product in (12.4) denotes a
sum if A is finite dimensional, otherwise an integral over the variables involved
in the function space A, leaving X € I' as the free variable of (12.4). Provided
h'(p) is monotonic, so h(p) itself is concave (it will need to be bounded above,
K (p) < 0), (12.4) will possess a unique solution p = p; for each ¢y, A. We must
also satisfy (12.1) and (12.2), which are linear. When this has been done, we shall
have a unique set {cop, A, p1} for each specified macroscopic state a. This means
we shall be in the position envisaged in §6, having constructed the manifold &
containing the values of p;, and with it the idempotent map P.

An elementary case of this procedure results from the choice h(p) = —%p?, so
(12.4) gives p = —co — A.M, whereupon the whole construction becomes linear.
We are then back at the start of subdynamics. Similarly, given any F(X) > 0,
one could use h(p) = —%F p?. Actually, our procedure can be generalized still
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further, as there is no reason why S[p] need be restricted to being algebraic in
p: it could also include derivatives. Provided S is quadratic in p, the procedure
will be linear. We conjecture that a suitable choice might provide a link with the
theory of §11, but that will not be pursued here.

We now focus attention on the important case where S = Sg, so h(p) = —pln p.
The resulting p will be called the quasi-canonical distribution p,, and &; is the
Mazent manifold £,. With this h(p) we have h'(p) = —Inp—1 so (12.4) becomes

In pg = —An — A.M, (12.5)

where A, = 1 + ¢, now takes care of the normalization, and our quasi-canonical
distribution has the form

pq = exp(=A, — A.M) (12.6)

subject to (12.1) and (12.2).
The normalization can be handled, and A, eliminated, by the same means as
in the equilibrium case, defining a partition functional,

Z[N = /Fexp(—)\.M) de, (12.7)

whereby
pq = Z " exp(—A\.M) (12.8)

now subject only to (12.2). There are also formal expressions for a in terms of
functional derivatives of In Z with respect to A, which are analogous to those of
equilibrium statistical mechanics. The value of S that results from (12.6) is

Slpa] = /F O + MM exp (—Ay — A M) d22, (12.9)

for which there are also alternative expressions.

We now have a map a — pq € &, although defined in an awkward, implicit,
way.

Before proceeding with our main development, we digress briefly to consider
pq itself. In general P, does not commute with L, so time evolution cannot be
expressed simply in terms of quasi-canonical distributions. Given the observa-
tional value of a at t = 0, one could start with the corresponding p, and let p(t)
evolve thereafter by Liouville’s equation. This is somewhat uncritically adopted
by Robin (1990), although I believe that subsequent perturbation expansions lead
eventually to acceptable results in his chosen context. More generally, one wants
to avoid giving a privileged role to t = 0.

Another possibility was put forward by Lewis (1967), and I suspect by several
writers (e.g. Richardson 1960; Levine 1979; Duering et al. 1985), it being super-
ficially attractive. We remark that, given p(t), Liouville’s equation gives p, from
which

a=Mp= MLp. (12.10)
By asserting that p(t) should at each instant be the p, corresponding to a(t)
there results a universal algorithm for NESM since we have ¢ in terms of a. How-
ever, this is simply incorrect: the resulting macroscopic equations are reversible,
and the underlying p,(t) does not satisfy Liouville’s equation. Nevertheless the
results from this procedure are used in practice: they can be identified as the
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adiabatic evolution through states of local equilibrium. In the case of continuum
mechanics for example it gives an ‘ideal’ fluid with zero thermal conductivity and
viscosity; in the kinetic theory of gases it compels p to factorize into a product
of one-particle functions (see Mayer 1960) and leads to the Vlasov equation of
plasma physics. Moreover, not surprisingly, the entropy S|[p,| for such an evolu-
tion remains constant (Dougherty 1972). This can easily be seen as follows. Let
pq be the rate of change that results from the above construction, while gy, is the
rate that would be given by Liouville’s equation. Then

[ (= ) an =0

by construction (we have reinstated the integral sign previously implied by our
notation) and

[ =iy a2 =0

by the normalization. But, recalling the variational argument leading to (12.4),

S1pdl = Slos) = [ 1 (p) (o — pr) 42
= [ (eot A M) 3y = ) 42 = 0.

As S[p] = 0 (as noted in §9),
S[pg =0 (12.11)

also. The above idea can be conceived in terms of discrete time-steps, say At;
during a step p obeys Liouville’s equation (preserving S but migrating away from
&,) and at the end of the step an application of P, returns it to &, with an increase
AS in S. The reason why it fails to give the law of increasing entropy is that in the
limit At — 0, AS is O (At?). To meet this, Lewis proposed that At remain finite.
But that is hardly acceptable as a piece of general theory, as it requires separate
investigations, guided by physical intuition, to select the appropriate At (the
relaxation time); for example, Boltzmann did this, apparently subconsciously, in
regarding collisions as instantaneous.

Suppose now that at equation (12.3) we had made a different choice for the
function h(p), provided that h is bounded above and concave. The reader will
easily check that everything we have developed in this section in respect of Sg
would have a natural analogue; it would be necessary to replace the exponential
function in (12.6) by the inverse of the function h’. What, then, is the particular
merit in taking S to be Sg? To the physicist this choice has the obvious attrac-
tion that p, is in some sense as close as possible to thermodynamic equilibrium
subject to (12.2); similarly one might claim that it is ‘locally’ in equilibrium, as
in the Chapman—Enskog method. It may be reasonable to expect that (by molec-
ular processes such as collisions) the non-equilibrium aspects of p have relaxed
rapidly to bring p close to p,, as in Bogoliubov’s discussion. Alternatively, one
can invoke information theory, as we will describe later. However, for the present
no particular justification for the choice p; = pq is needed if it is to be used in
procedures like that of § 7. The basis for choice would merely be that it performed
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better, for example gave better approximations or convergence, or was easier to
handle (though if so there might be helpful explanations of that fact).

13. Time evolution in Maxent

Here we derive our version of Zubarev’s results using the notation and method-
ology that we have developed so far; subsequently we will outline the connection
with Zubarev’s presentation.

The previous discussion suggests that we should write

P = Pq+ P2, Pq €& p2 € By (13.1)

and proceed with a calculation parallel to that of § 7 to derive another version of
the master equation. That might be possible in principle, but when it is attempted
we lose the linear mathematics of §7, as &, is a curved manifold. It is at this
stage that we need to amend the procedure outlined in §6. We make a nonlinear
transformation to a new representation:

n(X,t) = —Inp(X,1). (13.2)

It is well known that if p satisfies Liouville’s equation, so does any g(p), where
the real function g is monotonic and differentiable. So, in particular,

dn/ot = L. (13.3)

Thus any spectral characterization that may be available in respect of p applies
equally to 7. By (12.5) we can write, in obvious notation,

Ng =—Inpy = A, + A M, (13.4)

which shows that the class of ‘preferred’ distributions in E, namely &, is con-
veniently mapped into a vector subspace in the new representation, with {\,, A}
as a parametrization. This may appear to be awkward, but it is analogous to the
use of temperature in equilibrium statistical mechanics.

To proceed with the general solution of Liouville’s equation we write

(X, t) =nq+C= A + A M + ¢, (13.5)

where ((X,t) is a new phase function. This split n = 7, + ¢ is analogous to
the split p = p; + p, used deriving the master equation in §7. The aim in the
remainder of this section is to follow that derivation in trying to eliminate {(0)
instead of p,(0), but it is no longer the case that ¢ corresponds in some way to
the kernel, Fj.

It may be well to clarify the nature of the terms occurring in (13.5). Here, A, (%)
is a number, depending only on t; A(t) is a vector in A’, the dual of the space
of observable functions, also depending on ¢; M(X) is a kernel in A ® E which
is independent of ¢, the dependence on A being suppressed in our notation but
is what is involved in the ‘dot product’, while ¢ is a function in F that depends
on time. We have the Green’s function U(t) = exp(Lt) and note that U(t)c = ¢
if ¢ is a number (i.e. independent of X). We now define a time-dependent kernel
analogous to the Heisenberg representation of quantum mechanics (although we
use no quantum physics),

M(X,1) = U(~t)M (X), (13.6)
Phil. Trans. R. Soc. Lond. A (1994)
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satisfying

0

—8—¥M(X,t) =—-LM(X,t) with M(X,0)= M(X). (13.7)

Suppose temporarily that we have to solve Liouville’s equation for ¢ in an
interval (¢o,t) in circumstances where A, and A have prescribed values throughout
the interval. This postpones to a later stage the question of how those values were
acquired. To solve (13.3) requires that we solve

o¢ 0
L= =2 (A

ot ot
of which the right-hand side is a known inhomogeneous term. But there is no need
to continue along those lines as the answer can be written down immediately from

An(t) + A(t).M +((t) = exp {L (t — 1)} {An (to) + A (to) .M + C (to)}
and it is readily checked that it can be rewritten as
C(t) = ePT0¢ (tg) — €PN, () + A (¢) .M (X, 1)), (13.9)

(noting (13.6)).

We now ask whether it is possible to develop the theory along the lines of
§7, whereby to can be pushed arbitrarily into the past, and the dependence on
C (to) removed; as we saw there that is not in general possible but may become
possible if L satisfies a condition such as having a continuous spectrum (in the
space orthogonal to constants of the motion). If this is indeed so, the results can
be obtained by a device that ensures causal behaviour; in §7 this consisted of
using the Laplace transform. Here we can do it by inserting a small extra term
in the left-hand side of (13.8), so that it becomes

aC/ot — (L—e)C =..., (13.10)

where € > 0 is small and gives a slight decay to the homogeneous term; the Green’s
function for the left-hand side becomes exp {(L — €)t}. No such alteration is made
to the right-hand side of (60), but (as is again easily checked) we can rewrite it
in a new form

FAM) 4+ L+ AM), (13.8)

Lt% () + A(t).M(X,1)}. (13.11)

If (13.11) is temporarily called F'(X,t), the solution to the modified equation
(13.8), for a given €, and over a given interval (ty,t) can be written down using
the Green’s function, and is

C(t)_e(L €)(t— tO)C +/ (L— e)t t X t) 4+,

By further easy manipulations this becomes

t
(E(t) — e(L—e)(t—to)C (tO) _ e(L—e)t/eEt'a_i; {)\n (t/) + A (t/) M (X, t/)} dt.

to
So far this is without approximation or assumption of any kind. (If now € — 0,
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(13.9) is recovered.) Subject to what has already been discussed, we now let
to — —o0, keeping € > 0, with the result that the term in ( (¢y) disappears, and
we reach the causal solution:

t

.0
C(f) = —eF= / e D (8) + A (€)M (X, 1)} d

—00

Writing ' = t + 7 and shifting the time argument of the Heisenberg kernel so as
to absorb the factor in front of the integral

0

()=~ [ &7 L Dult+ 1) 4 M+ 1) MX, 7)) dr (13.12)

This is the desired result. It has the form of a Laplace transform with respect
to negative time, —7, with ¢ as the transform variable. The limit € — 0 is a
delicate one as the integrand does not — 0 for 7 — —oo so the integral diverges,
although it can be redefined by the theory of summability, and the limit treated
as a Tauberian one (Widder 1946, p. 195).

If we carry out the obvious integration by parts in (13.12), which is merely
a standard step in Laplace transform theory (transform of a derivative), there
results

0

(1) = — {hn(t) + A(6). M) + € / ™ Dt +7) + A(t +7).M(X,7)} dr.

The first part of this, which is independent of €, is merely the negative of 7,
the ‘assumed’ contribution to 7 in (13.5), so when our result is substituted into
(13.5), it cancels, leaving an integral over past time for 7 itself:

n(X,t) = e / T [An(t +7) + At + 7). M(X,7)} dr. (13.13)

— 00

This remarkable expression needs further discussion, most of which we post-
pone. For the present we must emphasize that although (13.13) appears to be a
formula for a solution to the Liouville equation, it is not an explicit solution on
account of the presence of the operator M (X, ), which is merely an abbreviation
for the process of solution. What (13.13) actually does is to organize the selec-
tion of solutions of Liouville’s equation appropriate for the level of description M.
Each such choice is prescribed by a history {\,(t), A(t)} and implies (in principle)
a resulting history {a(t)}. The theory of this section has not shown how to extract
from this any explicit procedure for predicting a(t) given a(0). On reviewing the
preceding (and somewhat clumsy-looking) derivation, it will be confirmed that
it actually follows a similar line to the derivation, in §7, of the master equation.
In each case, unwanted details of p are eliminated by supposing that their in-
fluence decays when the initial instant is pushed into the remote past. In each
case the formidable details of solving Liouville’s equation are concealed by formal
operators (1 in §7, M in the present section). The presentations differ because
of the nonlinear transformation from p to 7, but one can only conclude that the
derivations either both succeed or both fail, and that where thay succeed they
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reach the same result, i.e. the same selection of solutions, although differently
expressed.

14. Zubarev’s derivation

Equation (13.13) above, was given by Zubarev (1961). The resulting Liou-
ville function p = exp(—n) is called by him the non-equilibrium statistical oper-
ator, the word ‘operator’ being used since that is the nature of p in Zubarev’s
quantum-mechanical context. We now outline his approach, making reference
to his book (Zubarev 1974). He uses the name ‘quasi-equilibrium’ for what we
have called ‘quasi-canonical’ distributions. His §21 contains the basic material;
besides treating the underlying physics as quantum mechanical he selects the de-
sired description (M in our notation) to be specifically that of fluid dynamics,
although commenting that other choices could be adopted. The method for deriv-
ing (13.13) is one of tentative construction and verification, and appears rather
abstruse. The motivation begins with a consideration of the idea of the hierarchy
of relaxation times, following Bogoliubov. From this emerges the concept of ‘local
integrals of the motion’, which are objects whose time evolution occurs on a scale
far slower than molecular evolution. As the distributions of equilibrium statistical
mechanics arise in the form of functions of invariants of the motion, it is natural
to attempt to construct distributions for NESM from these local integrals; this
line of argument leads eventually to (13.13). A further technical point is that he
omits the Lagrange multiplier for normalization, A,, but subsumes the process
of normalization in a quotient, (), which corresponds to the partition function
of equilibrium theory. The basic result, equivalent to our (13.13), is reached at
his equation (21.10a). It has to be verified by substitution that the resulting p
satisfies Liouville’s equation in the limit € — 0.

The introduction of the factor € attracts considerable discussion. The action
of the terms involving € in (13.13) is referred to as ‘taking the invariant part’
of the integrand, meaning the smoothing out of oscillating terms (denoted with
a wavy line over symbols). This is traced to treatments of the scattering theory
of Schrodinger’s equation, in particular the work of Gell-Mann & Goldberges
(1953). The prescription is that the thermodynamic limit (V' — oo, where V is
the volume) should be taken before letting ¢ — 0. This has the effect of selecting
retarded solutions (or outgoing waves) or alternatively of removing the effect
of reflections from boundaries. We recall that finite quantum systems cannot
achieve a level of stochasticity higher than that of ergodic, but they can do so in
the thermodynamic limit (although unfortunately that introduces other technical
difficulties). It is only in that limit that a continuous spectrum is possible. We
discuss some of these matters further in §23. It should also be noted that, in
taking the limit € — 0 in (13.13), the parameters )\, and X are functions of e.

Another possible attitude to the replacement of L by L — € is referred to by
Zubarev and may be enlarged upon here. Such a replacement in the full Liouville’s
equation would mean that the map is no longer measure-preserving, but its use
in respect of the term in ¢, as in (13.10), still leaves the full equation measure-
preserving since the necessary modification in A, ensures that automatically.
When one uses the ‘ensemble’ concept of a large number of copies of the physical
system, the term e( implies a mechanism for the destruction of some of the
copies, while the adjustments due to A, imply a restoration by new copies in
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different states. Physically this could be interpreted in terms of random external
influences such as reservoirs, in other words an appeal to ‘open systems’. This
form of modification is curiously reminiscent of the so-called ‘BGK’ term used as
a simple model for the Boltzmann equation (see, for instance, the third edition
(1970) of Chapman & Cowling’s book—it does not appear in earlier editions). In
his Appendix II, Zubarev discusses the connection between his approach and that
of McLennan, who developed methods involving open systems (see McLennan
(1963) for a summary).

Elsewhere in the book, Zubarev presents a number of applications of his method
to transport processes, correlations, relaxation processes and so on.

15. Entropy maximization

To set the scene, we outline the general arguments leading to the adoption
of maximum entropy prescriptions for assigning probabilities in science. This
summary does not pretend to be a substitute for the expositions of Jaynes and
others. We make reference to the reprint collection Jaynes (1983).

Where complete description or observation is impracticable, one must be con-
tent with reduced descriptions, and when these are formalized as means, correla-
tions and the like, the concept of probability seems naturally and inevitably to be
imposed on the scientist. Once a probability distribution has been supplied, the
extraction of further useful statements is a mathematical activity requiring exper-
tise, but not one involving conceptual difficulty. The assignment of probabilities
in the first place is a more contentious matter (Fine 1973; Gillies 1973).

The Maxent approach starts from the assertion that when a probability dis-
tribution {p;} is given, (1 < ¢ < k), it conveys information to the recipient.
According to Shannon’s theory, this can be measured quantitatively (in bits) by

k
Z pi log, p;.

i=1

The remaining uncertainty, or lack of information, can thus be measured, in suit-
able units, and with an arbitrary additive constant, by the information entropy:

Sr = ——Zpilnp,- (15.1)

(we revert to natural logarithms only for convenience).

The underlying philosophy is that if {p;} is unknown, and one is asked to make
some prediction, then one should select {p;} to mazimize S; subject to Y p; =1
and subject to such further (but partial) information as may be available. The
basis for this, stated simply, is that to do otherwise would be to claim a higher
level of information than had been provided. The above outlines the earlier version
of the idea, explained at length in Jaynes’s Brandeis lectures of 1963 (collected
papers p. 39ff; see also pp. 233-237). The same conclusions, that S; should be
maximized can alternatively be reached, on the basis of very mild axioms, as a
general principle of inference (Shore & Johnson 1980), and this approach is now
the preferred one.

To accept these arguments means adopting an interpretation of ‘probability’
that departs from the more commonly accepted one of probabilities resulting
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from numerous repetitions of an experiment. Neither mathematics nor theoretical
physics has the resources to adjudicate between these possible approaches to this
question, and our attitude in this article, as part of our comparative study, is to
investigate the consequences of the hypothesis without appearing to endorse it.
If no other information is available, one has p; = k~! for each ¢, a uniform
distribution indicating complete ignorance; this can also be identified with what
is called the ‘prior’ probability distribution. If now further information, e.g. by
observations, becomes available, it is taken to mean the supply of the ezpectation

values of random variables f;, j =1,2,...,¢ where ¢ < k. It is well known that
the set {p;} that maximizes S; subject to the additional constraints,
ij(i)pi = (fj) =a; (say), (15.2)

has the form
logp; = =\, — Z A fi(8), (15.3)
J

where {);} are Lagrange multipliers. For a more careful investigation of this, and
the expressions in terms of a partition function, we refer to Jaynes, pp. 45-52.

It is worth noting that the above formalism has been applied in other areas,
an important example being image-processing. Here, an imperfect image can be
‘sharpened up’ by Maxent procedures. Work along these lines has progressed
rapidly since about 1980, in parallel with advances in computer science and nu-
merical analysis, which are required to handle the massive sets of equations that
have to be solved. This has been of great benefit to astronomy and medical sci-
ence (to mention only two of many fields). These applications are so impressive
as to leave no doubt that this approach to probability must be accepted and
welcomed in appropriate circumstances. That does not, however, excuse us from
considering critically its application to statistical mechanics.

There is an initial difficulty arising from the fact that, in classical mechanics,
the probability distribution p(X) is a function of continuous variables, rather
than a label i as above. On making the obvious adaptation of the theory one
notices that the analogue of the uniform prior is not unique; a change from X to
a new representation of phase space could imply that the new prior is not uni-
form, contradicting what would have been deduced had the new variables been
in use from the start. This is indeed a worry in other contexts, as illustrated by
Bertrand’s paradox (Jaynes, p. 134ff). In statistical mechanics, it seems to be
universally accepted that one is to start in cartesian coordinates, with the cor-
responding momenta. Then, one restricts changes of representation to canonical
transformations (possibly involving the time, as in moving frames). As is well
known, canonical transformations are measure-preserving (like time evolution).
One then has a consistent scheme, but it could be objected that other possibili-
ties have not been eliminated. One further point that can be offered here is that
in the quantum mechanics of a spatially finite system, the energy eigenstates
supply a natural discrete set on which probabilities {p;} are to be assigned—a
feature often used in textbooks to argue that quantum statistical mechanics (in
equilibrium) is more readily understood than classical. We then invoke the cor-
respondence principle: when the classical limit is considered, asymptotic results
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about the density of the eigenstate spectrum lead inevitably to the adoption of
the uniform measure in classical phase, as above.

If thermodynamic equilibrium is defined to be a time-invariant macroscopic
state which is completely specified by the values of invariants of the motion,
then the above procedure of Maxent is identical with the familiar derivation of
standard results. Usually the energy is the only such constant, as the effects of
boundaries prevent the appearance of others, e.g. angular momentum, which the
physicist might look for. If others do exist, the family of equilibrium solutions is
different from what it is when the energy is the only one, although the latter is
a subset of the former. It is important to emphasize that the Maxent formalism
cannot answer the question ‘what invariants are there?’, though it can supply p
to the physicist who has observed values of some or all of those invariants that
exist. In my view, the question of what they are is a legitimate part of the subject,
which is in principle to be answered by ergodic theory even though one admits
that very little progress has been made (see Jaynes, p. 232, on this point).

It should also be noted that prescribing the value of the energy can be inter-
preted in two ways. In the first, the value is regarded as exact, and a part of the
description of the system. In that case, probability zero is ascribed to those parts
of I' with incorrect values of the energy, and a non-vanishing measure is attached
to 3, the energy hypersurface (see §4). After including the necessary jacobian
factor, Maxent then leads to a uniform distribution on ¥, i.e. the microcanonical
distribution. The second interpretation assumes that the given value of energy is
an expectation value, in which case Maxent leads to the canonical distribution.
In practice, for large systems, the two routes lead to equivalent results in nearly
all predictions (an obvious exception arises if one asks about the variance of the
energy!). We mention this to alert the reader to the idea that the Maxent phi-
losophy is less clear-cut than it is sometimes made to appear. Of course, similar
remarks apply where there are further invariants besides the energy.

16. Jaynes’s derivation of NESM

We turn now to NESM. This may be defined as an activity in which some
(at least) of the data supplied consists of values of observables which are not
invariants. Moreover, the data may refer to various times or ranges of times;
it may consist of different observables at different times. In short, it might be
anything! Similarly, the predictions asked for could consist of the values of any
observables, not necessarily the same ones as occur in the data, and at any times.

In this very general context, Jaynes has indicated how the Maxent principles
and procedures should be formulated and applied. The material appears in several
places in the collected papers (Jaynes 1983), but the most extended exposition
occurs in Section D of a Conference paper of 1979 (see p. 287ff). This work also
appears in Grandy (1988). The following is an attempt to present parts of it in
the style and notation already used here, together with my own comments.

Data are available at times ¢, t5, ..., and maximum entropy is supposed to
be used to establish a Liouville function p(t) which is genuinely time-dependent,
and satisfies Liouville’s equation. It will be sufficient to obtain p at a particular
time as (in principle) Liouville’s equation then enables it to be computed at
other times. Without loss of generality, the particular time is designated as t = 0.
Accepting the discussions of §15, the problem is to maximize S[p] at t = 0
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subject to constraints imposed at other times ¢, ts, ... (together with the usual
normalization). The Heisenberg operator defined in (13.6) is a convenient tool.
Suppose firstly that there is a single observable, given by a kernel m,(X), whose
value at time ¢, is given as aq, so, in our previous notation,

ml(X)p(X, tl) = as. (161)
When this is converted to the corresponding implication at ¢ = 0 we have

m1(X,t1)p(0) = a, (16.2)
where m; (X, t;) is the Heisenberg operator. More generally, there will be a family
of such conditions for observables my, my, ... at times ¢, t,, ...; the resulting
formal procedure for maximizing S[p| at ¢ = 0 introduces Lagrange multipliers A,
Ag, ..., together with A, for the normalization, in a way that is readily understood

though likely to be very awkward to implement. Following the usual method (as
in the steps from (12.1) to (12.6) above) it results in

Inp(X,0) = =Xy — > Aemu (X, t) - (16.3)

A further extension is also straightforward: the set of ‘information-gathering’
times {t;} might become a continuum, with the result that summation over k
would be replaced with integration, and A\, would become a function, A(¢'), say.

Suppose now that the information-gathering times are finite, i.e. do not extend
to t = Ho0o. Then the above formulation is undoubtedly the correct implemen-
tation of the philosophical principles contained in Maxent; indeed it could be
claimed to include the most general questions that could be asked. If so, the class
of questions considered in the present article, namely the evolution a(t) of a spe-
cific macroscopic description, starting from a(0), could be expected to emerge as
an application. Unfortunately, it does not do so without further amendment.

The procedure leading to (16.2) is translationally invariant with respect to time,
notwithstanding the particular use made of ¢ = 0; it gives a p(t) which would
maximize S[p| at any time subject to the given data (noting that it satisfies
Liouville’s equation, so S is constant). Some of that data could therefore be in
the future, i.e. some of {t,} may be positive. In using the word ‘prediction’ it
would be natural to arrange that ¢, < 0, so that evolution in £ > 0 emerges
free of any further constraints. But the method given here could equally apply to
times earlier than all the ‘information-gathering’ times, so giving ‘retrodiction’
for p(t) at times before the data. As the underlying equations are time reversible
(subject to reversal of velocities and magnetic fields), any solution p(t) obtained
from the procedure could be replaced with its time inverse, and the resulting
observations m;, ms, ... at the corresponding sequence of times in reverse, to
give another solution obtainable from the procedure. Thus the method contains
nothing to select, from the class of all solutions of Liouville’s equation, those which
show macroscopic variables tending towards equilibrium. It cannot, therefore,
lead to macroscopic evolution equations for a(t) which (like the heat conduction
equation) are time-asymmetric. On further consideration, this is not surprising, as
Maxent does not say anything about time asymmetry and the procedure outlined
above contains no ingredient that would create asymmetry.

Applying the method to the evolution of a(t) when given a(0) leads to the
following. At ¢ = 0 the resulting p is p,(0), and it then evolves by Liouville’s
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equation in t > 0, so supplying a(t) (and similarly, in ¢ < 0 as well). This leads to a
situation that we rejected in § 12. It puts p on &, at the privileged time ¢t = 0, from
which it migrates at other times, and the resulting law of evolution for a(t) fails to
be translationally invariant with respect to ¢, (or, in subdynamics terminology,
this projection operator fails to commute with the liouvillian). The ideas we
described in §12 (Lewis’s principle) represent a crude attempt to correct this: by
allowing evolution for finite time-steps and remaximizing S at the end of each
step, plausible results can be obtained and the law of increasing entropy ensured
(Lewis 1967). It can only be concluded that, for all its apparent generality, the
time-dependent Maxent as described so far simply does not answer our question.
It does not introduce irreversibility and it does not give macroscopic evolution
laws that are translationally invariant with respect to time.

Jaynes (p. 289) notes the unsatisfactory point that p has the form p, at ¢t =0,
calling this ‘somewhat of a mystery’. It would mean that irreversible processes
are not yet in progress at ¢ = 0, whereas intuition would suggest they should be
already in progress. This point is offered to motivate the use of entropy maxi-
mization with respect to data at more than one time. (As a further motivation
(p- 294), systems that exhibit ‘memory’, or hysteresis, are mentioned, and while
it is true that an eventual theory would have to encompass these, they are not
discussed in depth in the present paper, and are not needed for motivation here.)
The following is my account of how the theory should be developed.

The idea is that a macroscopic evolution a(t) shall be accompanied by a solution
of Liouville’s equation p(t), in such a way that, besides satisfying M p = a at all ¢,
it shall also have the property that, at each ¢, p(¢) shall be that which maximizes
S[p] subject to all the earlier values of a(t'), t' < t. So the time-dependent
Maxent principle is applied not merely to the initial data like a(0) or to items
of experimental data at miscellaneous times, as we envisaged before; it is to be
applied to a(t') itself as it is computed from the theory, in a recursive fashion.

The condition to be satisfied by p(t) in respect of the observable at the earlier
time ¢’ is analogous to (16.2):

MX,t —t)pt)=a(), <t (16.4)

It is unclear how far back in time ¢’ should extend, so we provisionally set a
lower limit ¢' > ¢,. We now proceed as usual with the new constraint (16.4);
this introduces a Lagrange multiplier A (#') which, besides being (as previously)
vector-valued to handle the chosen set of observables, is now also a function of
the parameter ¢'. The variational procedure leads to an analogue of (16.3),

t

Inp(X, 1) = —\, — / X(#).M (X, —t) dt, (16.5)
to

where A, deals with the normalization (the reason for the notation with overbar

will appear below).

This is the essential result. However, unless we allow the limit t, — —oo, it
would appear to be no advance on the ideas described earlier in this section, as
the ‘information-gathering’ times are of finite extent. If on the other hand we
set ty = —oo there is a new situation. A preferred direction of time has been
imposed, and irreversibility may be described. The symmetry breaking can be
traced to the physicist’s notion of prediction, i.e. to his role as the observer and
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to his mental processes; in other words to what is also called the ‘physiological
arrow of time’. The limit t, — —oo also leaves (16.5) translationally invariant
with respect to shifts in time. But it raises a possible difficulty with respect to
convergence.

Although Jaynes, in the 1979 article, does not propose the limit t; — —oo
in general terms, he discusses as an application the question of near-equilibrium
properties, and here (p. 302) he includes that limit and shows that the problem
leads to a Wiener—Hopf integral equation for A (¢').

Adopting that limit in the context of general theory, we record the final result,

Inp(X,t) = <A, — / U OXW).M (X, — 1) dt, (16.6)
or, withn=—Inpand t' =t + 7,
0 (X,t) = A, +/O Xt +7).M (X, 7) dr. (16.7)
This has to be used in conjunction with the constraints.

17. Further consideration of Maxent results

On comparing equations (13.13) and (16.7) it will be obvious that we have
reached the same basic result by two very different routes. The equations are not,
however, identical, so we must firstly comment on the differences. One of them
concerns the handling of the normalization, which is plainly a mere technicality
and need not be pursued here. The other difference arises from the treatment of
the lower limit of integration at 7 — —o0; in our own derivation of (13.13) the
convergence of the integral was not assumed, hence the device of inserting the
convergence factor with the instruction to let ¢ — 0 at the end. Zubarev’s own
treatment also uses this device. As with subdynamics, it would be very helpful to
establish analytic conditions under which this procedure is correct either in the
sense of convergence or summability. Such conditions would certainly involve the
level of stochasticity of the dynamical system, as discussed in § 5 above, requiring
a continuous spectrum or perhaps some stronger characterization; however, I
expect that the required condition would also involve, jointly, properties of the
kernel M, i.e. the choice of observable. When such conditions hold, we may let
e — 0 in (13.13), and (after dealing with the normalization), it coincides with
(16.7) if we identify eX(e) of (13.13) with X of (16.7).

Next we comment on the derivation of (16.7) presented in §16. There is an
important distinction to be made between two activities to which Maxent has
been applied. The first of these, which may be called data processing has as its
input a collection of data in the form of numbers; it may be a large collection but
is insufficient to prescribe the object completely. The desired output is further
numbers, which would have been calculable exactly if complete data were known,
but are to be estimated on the basis of incomplete data. This activity is not in
general accompanied by time evolution subject to known differential equations;
for example the applications to imperfect images in astronomy, or fingerprints,
have no time evolution. (In contrast, an application to weather forecasting would
include dynamical equations.) The second activity, which may be called theoretical
statistical mechanics has as its input a differential equation, namely Liouville’s
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equation (which in turn was obtained from the law of molecular interaction)
along with boundary conditions, and has as its output a new set of differential
(or other types of) equations. The latter form the starting-point for branches of
macroscopic physics, such as continuum mechanics, fluids, plasma physics, solid
state physics, and so on. They enable the macroscopic physicist to work on those
fields without ever having to refer back to the molecular dynamics; he will not
need to do any molecular data processing, with the hazard of instability with
respect to initial data.

Maxent as applied to data processing operates with great generality: provided
the input data are not actually contradictory it can supply an answer to any
question, with the obvious proviso that the answer is only an estimate and may
turn out not to be true. Maxent as applied to theoretical statistical mechanics
is more subtle, once one ventures beyond the case of thermal equilibrium. In
NESM, as we saw in the previous section, to get the results the macroscopic
physicist is looking for, which are contained in (16.7), one must be able to lower
the limit of integration to —oo. Although we have not formulated the condition of
stochasticity required for this, it is plain that such a condition is indeed required,
for otherwise statistical mechanics would apply to integrable systems, which is
false. One has to conclude that Maxent alone cannot supply the foundations of
NESM which form the subject of this paper.

We now have, in §§13 and 16, two derivations of (16.7). They both start from
the existence of a liouvillian, L, and the adoption of a macroscopic description
specified by M, and both are contingent upon the convergence of the integral.
But the derivation of § 13 makes no use of Maxent! The integrals over past time,
which entered (16.7) as a result of imposing the maximization of S with respect
to earlier possible evolutions, appear in (13.13) as a result of the more mundane
operation of eliminating (. So, in any instance where there is a valid equation of
the form (16.7), it can be reached without appeal to the Maxent principle.

It would appear that, when the limit ¢, — —oo is applied, the Maxent condi-
tions become lagically superfluous. I offer the following interpretation of this out-
come. In the ‘theoretical statistical mechanics’ mode of thought one is only trying
to explain ‘histories’ a(t) which are macroscopic evolutions that occur naturally.
The fact that they occur at all, and reproducibly, signifies that the ‘unwanted’
microscopic information can be eliminated. That process of elimination has been
mathematically developed here in two distinct but similar presentations, namely
in §7 and §13; success is contingent upon the elimination of the initial value of
the unwanted data in the limit that the initial time is pushed into the remote
past, i.e. our limit 7 — —oo in the integrals that we have discussed. It is remark-
able that the same integrals appear from the algorithm of retrospective Maxent
(§16). In my view, this has encouraged a questionable application of the Maxent
philosophy to the present problem. Since the result is obtained uniquely by the
procedure of §13, there is no scope for maximizing the entropy. The illusion that
it is being maximized can be likened to the situation in the case of a variational
problem with discrete parameters, such as Jaynes’s dice problem (Jaynes, p. 41fF).
If it should happen (unnoticed) that the number of constraints equals the number
of unknown variables, one could proceed to introduce undetermined multipliers
and carry out what looks like the normal manipulations to solve for the multipli-
ers and the variables themselves. Although this would not lead to error, it would
create a mistaken impression that maximization was being achieved.
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I suggest that a correct application of the Maxent formulation occurs in a case
where data about a(¢) has indeed been supplied in a finite time interval, and
it is desired to make the best prediction of subsequent evolution. The supplied
data need not form a natural evolution: it could represent a fluctuation. The
procedure leading to (16.3) would than give the best estimate of that subsequent
evolution. One could do this even in circumstances where the integral over past
time fails to converge, so there is no reduced evolution equation. Such applications
should be regarded as ‘data processing’. But when an evolution equation exists,
it very quickly takes over and determines the future macroscopic motion almost
uniquely, as implied by the dynamics, with no scope for maximizing entropy. I
regard this as almost tautological: if we restrict ourselves to the macroscopically
predictable, than the system contains whatever features are required to produce
unique answers without invoking entropy maximization.

Once (16.7) has been reached, by whatever route, the redundancy arising from
incomplete information has been resolved. But it remains a formidable problem
to extract from (16.7) the required equations for evolution of a(t). It is unclear
how to eliminate events for ¢t < 0 from the standard problem of predicting a(t) in
t > 0 from a(0). The essence of this is, however, similar to our discussions of the
Master equation in §7. A physically useful description will be such as to have a
property of ‘rapid decay’, whereby the integral is appreciable only for small 7. If
this is not so one will have a system exhibiting hysteresis at the selected level of
description.

Of course, these problems can only be tackled in the case of simple systems
and with the aid of approximations, expansions and so on. Some idea of what is
available can be seen in chapter IV of Zubarev’s book, and there are applications
in the papers of Jaynes (1983 collection) and the text of Grandy (1988). The
methodology can be aided by a generalization of the partition function, but this
will not be described here.

18. Equivalence of the two schools

In the previous section it became clear that the approaches of Zubarev and
of the Jaynes group were in effect the same, although our presentation could be
criticized for lack of rigour. As already hinted there the Brussels and Zubarev
approaches can also be linked, as follows. In both developments, the aim is the
(seemingly unsound) one of solving initial value problems for the Liouville equa-
tion in circumstances where the initial data are incomplete. This is only possible
if the equation itself contains features whereby the influence of the missing data
is quickly lost or decayed in some sense. If that is the case, a special class of solu-
tions is identified by pushing the initial instant back to ¢ — —oo and ignoring the
effects of the missing data. In the Brussels case this calculation is carried out in
terms of p itself, and appears in § 7 above; the development of subdynamics in § 8
provides a useful way of organizing the subsequent calculations. In the Zubarev
case, as developed by the present writer, it appears in §13 and it differs from §7
as a result of the change of variable from p to n = —In p. Although this makes
considerable technical differences, the mathematical task is the same. We take
this to imply that, in those circumstances where a result is possible, it will be the
same in either representation. A rigorous investigation of this statement must
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await the appearance of a satisfactory account of the conditions under which
these procedures are possible.

Both the derivations presented here manipulate the unkown variable by means
of a decomposition p = p; + p2 or n = nq + (. The reader should avoid the
supposition that these are directly related!

The following, although not contributing to the logical structure of the present
paper, may be noted as something of a curiosity. We revert to a point discussed
previously in §12. There we considered the possibility of ‘entropy’ functionals,
defined as in (12.3), allowing the function h(p) to take a different form from
that of Gibbs (in which h(p) = —pln p). Here h(p) is required to be concave and
bounded above, so h’ is monotonic; see the paragraph following (12.4) and the
final paragraph of §12. Consider now how the work of §13 would be modified
if such a modified ‘entropy’ had been used. We would need to redefine n(X,t)
to be h' (p(X,t)), but the remainder of the development up to (13.13) would be
formally the same. The stochastic and spectral properties of the equation are
the same (as we noted at (13.3)). But in implementing (13.13) one has to make
use of the condition Mp = a at each ¢, and this makes the technical details
very different for differing choices of h(p); the meanings of the A(¢t) and A. M
are likewise different. Similarly, we can consider how the work of §16 would be
modified if a new choice of entropy were to be adopted for use in Maxent, purely
as a mathematical exercise and without concern for philosophical considerations.
Again, the work would be formally the same, arriving at an analogue of (16.7),
with the technical details (imposing the constraints) different. As before, it would
remain the case that the intended maximization of entropy would be illusory. If
now (as was inticipated in §12) one chooses h(p) = —%pZ, so that n = —p, there
is after all no change of variable (apart from the trivial change of sign), with the
result that the analogue of the work of §13 is now simply a new presentation of
the Brussels approach.

A further important difference between the two schools has to be considered.
We explained in §4 that invariants of the motion should preferably be ‘factored
out’, so that the motion in I" is already confined to a submanifold X, within
which no further invariants are available, although for clarity we used a notation
that did not emphasize the point. We can think of X as the energy surface for
simplicity, as usually the energy is the only invariant. So the support of p is re-
stricted to X, corresponding to the microcanonical distribution in the equilibrium
case. As I understand it, this is always the situation in the work of the Brussels
school. In contrast, the Zubarev and Maxent publications permit the support
of p to include the whole of I', which is the analogue of the canonical distribu-
tion. This represents independent motion in each X with a measure attached. It
is well known (see Khinchin 1949) that in thermal equilibrium, and asymptoti-
cally (i.e. for large systems), the canonical and microcanonical distributions are
equivalent for macroscopic purposes. The essence of this equivalence is that for
those layers in I" that have energy higher than the actual value of the energy, the
contribution made is rapidly attenuated by the exponential factor in the Gibbs
distribution, while for the layers with a lower energy the contribution is rapidly
reduced owing to the smaller volume occupied. It seems reasonable to assume
that the same would happen in NESM, but I offer no formal investigation here.

The relationship between the work of the two schools is not a direct one, in
the sense that both obtain explicitly the same solutions of Liouville’s equation.
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No such solutions have been presented here. The most one can say is that the
‘staging posts’ for solution, namely (7.9) and (13.13) have been related. We have
argued that in the (unkown) circumstances in which results can be obtained by
continuing from those equations to reach explicit answers, those answers would
be the same; that conclusion is itself further qualified by the point made in the
preceding paragraph.

The reader may feel disappointed that our claims of equivalence are not sup-
ported by more instances of specific formulae obtained from the rival approaches.
But, as explained in § 1, actual calculations are highly intractable, and I have not
succeeded in producing such results.

19. Comparison of methodology

Setting aside the conceptual differences between them, we can ask about the
relative advantages of the formalisms developed by the two schools, as regards
the further development of the subject.

The overwhelming advantage of the Brussels school is that by working with p
itself the underlying mathematics is linear. It is for this reason that the Brussels
school is able to advance the work well beyond the formal derivation of the Master
equation of §7. The development of subdynamics (see §8), and in particular the
discussion of equation (8.8) forms an important extension to the subject as it
enables one to consider quantitatively the long-time asymptotic behaviour of
the system in its approach to equilibrium. As Balescu (1975) has shown, the
use of perturbation expansions, although laborious, allows specific examples to
be worked out. There is thus a body of results which seem to be inaccessible
from the Maxent formalism. The perturbation expansions used start from non-
interacting particles as the unperturbed situation. While that would seem to be
the obvious suggestion, it is in fact widely suspected that this cannot provide
explanations of phenomena like long-time tails in kinetic theory. There is also
the point that (at least in the absence of boundary conditions) the system of
non-interacting particles is not ergodic; if it is to become stochastic even at the
lowest level (ergodic) the perturbation is in some sense singular, i.e. changes the
system qualitatively. Finally, the use of this perturbation method means that
one is in effect repeating ab initio the calculations of the equilibrium case (virial
expansion).

The work just mentioned has led to impressive achievements by the Brussels
school. On the other hand, their attempts to carry general theory further forward,
as outlined in §11, seem to have provided little further insight, and to have
attracted little notice.

As a final comment on the Brussels school we add a caution, for although
calculations start from a linear formalism, the nature of the subject is liable to
reintroduce nonlinearity. In the case of gases, the use of expansions of the Mayer
type, with r-particle distributions and correlations, is a case in point. Here, an
ingenious embedding of F into a larger space, containing additional objects called
‘correlation patterns’ is used (see Balescu 1975).

The advantage of the Maxent formulation is that it works with expressions that
are as close as possible in form to the canonical distribution of equilibrium. As a
result, it works best in circumstances where the physical state of the system is near
to equilibrium. This suggests an alternative notion of ‘perturbation’, in which the

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

e

A
\

\\ \\
2

/

\
{

A

P\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
g\

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

296 J. P. Dougherty

unperturbed case is that of equilibrium. This leads naturally to the consideration
of transport coefficients, linear response theory and irreversible thermodynamics.
Zubarev’s (1974) and Grandy’s (1988) texts should be consulted. It seems very
likely that (as with the canonical distribution) there are areas of the subject
where the formalism reached via Maxent supplies more tractable calculations.
Such advantages may well be explicable in terms arising from the origin of the
method. The passages in Jaynes concerning his concept of ‘calibre’ (p. 421), are
indications in that direction.

It will be noticed that the fields of application that are natural to the two
approaches, chosen merely on the basis of methodology, are very nearly disjoint.
This explains the point, mentioned earlier, that lack of common examples makes
it difficult to test them against each other. It makes the further point that a
broadly based approach to NESM would seek to make both methods available;
that is an object of the present paper.

20. The law of increasing entropy

We now resume the discussion started in §10. We noted there that the prob-
lem of macroscopic evolution, treated in the style of the Brussels school, need
not involve entropy. We have subsequently shown that the results of the Max-
ent approach are not mathematically dependent on entropy, notwithstanding the
impression that the evolution may be regarded as ‘supervised’ by a maximum en-
tropy condition (just as in elementary dynamics motion is supervised by Hamil-
ton’s principle). These considerations alone are not sufficient to determine what
choice (if any) to make for a non-equilibrium entropy, and, as already noted, any
entropy defined as in (10.2), i.e. as a functional specified in terms of h(p), is
constant in time.

One could leave the matter there, regarding it as a fruitless diversion. But such
is the prestige (or notoriety) of the the law of increasing entropy, that a paper un-
der the title of the present one ought to offer some explanation of what it means.
Let us accept that, for equilibrium states, it should be the Gibbs entropy (10.1).
This ensures that it has the conventional thermodynamic interpretation for vir-
tual transitions between neighbouring equilibrium states, i.e. dS = 6Q/T, so
maintaining the connection with the historical engineering origin of the concept.
One then also finds that entropy increases in a change (not necessarily infinites-
imal) between equilibrium states, e.g. where a partition is removed, so that the
initial state ceases to be equilibrium; the intervening non-equilibrium states are
not considered. Turning now to the question of attaching a time-dependent en-
tropy to non-equilibrium states, it is highly desirable that this should retain the
property of being additive for disjoint systems. That also enables entropy to be
given a local characterization in appropriate circumstances, by which we mean
that neighbourhoods in physical space can be regarded as subsystems possessing
individual contributions to the total entropy, so one can introduce an entropy
density. (The ‘appropriate circumstances’ concern the short-range nature of the
interaction potential, and do not always apply, e.g. in Vlasov plasmas. If the con-
cept of entropy density, with the associated concept of entropy flux, exists, it is
often claimed that there is a local version of the law of increasing entropy, the
Clausius-Duhem inequality (see, for example, Meixner 1969).)

The requirement of additivity implies the Gibbs entropy, but if the p(t) used
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there is the ‘preferred’ p selected by any of the theories discussed above, and
therefore satisfying Liouville’s theorem, S is invariant. One possibility is to
replace p(t) by the quasi-equilibrium density p,(¢) appropriate to a(t), so the
‘observed entropy’ of §10 is

Sonel() = — / poln py d92. (20.1)

This can in principle be computed for any non-equilibrium evolution, whether or
not p, appears in the methodology for making the calculations. Consider such a
calculation: initially a(0) is not an equilibrium state, by hypothesis, while a(c0) is
that equilibrium compatible with the conserved quantities, whose p4(00) is such
as to maximize (20.1). Hence Syps(0) < Sons(00) by construction. Underlying
this, however, is the preferred p(t) (one must not call it the ‘actual’ p!), satisfying
Liouville’s equation and such that M (p — p,) = 0. For this, S is constant, with

Sag < SObS(O) < Sobs(OO). (202)

This is straightforward provided one bears in mind that p(¢) does not evolve to an
equilibrium distribution, but continues to contain contributions in F,, see (6.1).

The above is an adaptation of an argument given in a well-known article of
1965 by Jaynes (see p. 77 of the collected papers). There, the observational level
was, specifically, the one-particle distribution f(&,v,t) in a gas, so Sy is just a
multiple of the Boltzmann entropy

Sy = — / Flog fdSaddo. (20.3)

In that context, one can go further than (20.2). Accepting Boltzmann’s hypothe-
sis of molecular chaos, and the neglect of triple and higher collisions, Boltzmann
proved that S’B > 0, with equality only at equilibrium, i.e. Sg(t) increases mono-
tonically.

Other contexts, for example heat conduction, suggest that a law of increasing
entropy should hold in the strong form of monotonic increase, but the argument
leading to (20.2) only demonstrates that the final value is maximal. On this point,
Khinchin (1949, p. 149) remarks that ‘such a proof has not yet been given’, and
it would seem that that remains the case to this day. Besides, there are apparent
exceptions, namely the so-called ‘spin-wave echoes’ in solids, and the similar
‘plasma wave echoes’ (see Clemmow & Dougherty 1990). Temporary decrease in
entropy has also been considered in molecular biology in theories of embryonic
cell differentiation (Schiffmann 1991). These examples suggest that there is no
need for an aura of mystery, with invocation of Maxwell demons, to be associated
with the point. What is needed is a dynamic characterization of the properties
of liouvillians and observables that ensures that entropy increases monotonically,
as it nearly always does.

(It may be noted in passing that Maxwell’s demons, along with coarse-graining
and other obsolete sources of confusion that have plagued the subject, are wisely
omitted from the presentations of both the ‘schools’.)

Finally, we recall from § 11 that among the additional developments emanating
from the Brussels school is the notion of an internal ‘time’ operator, somewhat
analogous to a Lyapunov function (see Misra & Prigogine (1982). This, if it exists,
provides a quantity that increases monotonically, so indicating the sense of an

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

e

R
\
\\ \\
P

/

\
L3
/

y &

P\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
£\

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

298 J. P. Dougherty

irreversible process at any instant, i.e. expresses the Second Law. But the ‘internal
time’ is not related numerically to entropy in a simple way.

21. Equilibrium statistical mechanics revisited

As NESM is so complicated a subject, previous attempts to justify the founda-
tions of equilibrium statistical mechanics have generally dealt with that question
alone, i.e. not as part of the wider problem of NESM.

If we were to do that in the spirit of the present paper, we would (see §4)
insist on working with densities rather than individual orbits. We would then
assume that the energy is the only integral (noting that that this could easily be
generalized) and we would consider the restriction of the motion and the densities
to an energy surface X. We would assume it to be ergodic (we discuss this further
in §22). Returning to the spectral properties listed in § 5, we note that ergodicity
implies that A = 1 is a simple eigenvalue, the eigenfunction being p = const. Thus
the only time-independent solution available is p = const. in X, and we have the
microcanonical distribution. As we have noted before, this can be replaced with
the canonical distribution if the number of particles is large.

The Maxent physicist would also work with p, which he would call ‘probability’.
He would know that energy is constant (whether or not the motion is ergodic)
and if the value of the energy is the only data, he would use bayesian inference,
hence the maximization of the Gibbs entropy, to reach the canonical distribution.

However, neither of these lines of argument has been widely adopted, and most
physicists would give the answer that was developed in the 1930s (or dismiss the
question as pedantic!). That answer is presented in complete detail in Khinchin
(1949), and elsewhere. There is for example an elegant summary in Reed & Simon
(1972, pp. 54 and 237). In this view, observations refer to an actual orbit X (t), and
the fact that observables other than the energy (such as pressure, magnetization,
etc.) are found to have constant values is explained by saying a time-averaging is
taking place. If the ergodic property is assumed, X (t) eventually visits any open
set in X, so that an average over a very long time results in a sampling of all of
Y. The difficult part, Birkhoff’s ergodic theorem, establishes that the resulting
average equals the microcanonical average.

Jaynes has, on several occasions, criticized this account of equilibrium (see
pp. 104-106 of the collected papers for a good discussion). The time taken for
X (t) to make a reasonable sampling of X would be enormous even for quite a
small system, typically more than the age of the universe. As it certainly far
exceeds the time taken for such systems to reach equilibrium from a typical non-
equilibrium state, it is obvious that such an explanation is unacceptable, and
that it could not form a part of the subject in a treatment that also encompasses
NESM.

We agree fully with this criticism. But Birkhoff’s ergodic theorem is only one
item in the whole subject of ergodic theory as set out in the books in our reference
list; other relevant results include those we have summarized in § 5. Unfortunately,
Jaynes uses the point about time averages as a reason for rejecting all things
‘ergodic’, and here we disagree.

The point of view of the present paper is that a common explanation is required
for equilibrium and NESM alike. It follows that the explanation of the equilibrium
states is their role as the eventual asymptotic state of non-equilibrium processes.
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As Liouville’s equation by itself does not provide equilibrium, p(t) does not ‘for-
get’ its past. It is for this reason that the notion of observables, and the decompo-
sition of function space (§6) is required, enabling the ‘unknowable’ details to be
relegated to E; at large ¢t. The way this works is different for different choices of
observable, hence the richness and difficulty of the subject. Whatever the choice,
the deviations from equilibrium must eventually decay—that is the acknowledged
experimental situation. How can they be guaranteed to do so? Broadly, the an-
swer can only be that the system should possess at least the characterization
listed in §5 as weak mixing, ensuring that the spectrum in E* should be contin-
uous. Incidentally, it shows Gibbs’s foresight at its most impressive! Once this is
understood, and it is desired to study the properties of equilibrium states in their
own right, one may as well redefine p to be one of the standard dlstrlbutlons
discarding the ‘noise’ from FE,.

If specifically required (e.g. for pedagogical purposes) to offer an explanation
of the equilibrium distributions without reference to NESM, we would propose
the one given at the start of this section. Our attitude to time averaging is the
following. For NESM to be possible, a system much be at least weak mixing. By
the hierarchy property described in §5 it must a fortiori be ergodic. Hence the
conditions of Birkhoff’s theorem are satisfied, so it is the case that the long-time
average of any observable is the same as its equilibrium value. But the status of
that result is only a mathematical curiosity, and it is not used as the basis of any
explanation. Moreover it is not surprising, as the time for averaging far exceeds
any initial period for equilibration.

22. Availability of stochastic properties

A question of concern is that of whether, and if so to what extent, real physical
systems possess the properties described in §5, for if not the theories described
here are empty, having no implementation. There is of course the well-known
result of Sinai (1970); even that applies to a rather artificial case, and the proof
of ergodicity is lengthy and technically difficult. A few other special results have
been obtained more recently, for example by Knauf (1987), but there remains a
large gap, which has been a source of criticism. One could simply reply that it
will no doubt be closed by the efforts of future mathematicians, but that may be
over-optimistic in view of the great variety of laws of force and types of molecules.

That variety accounts for the diversity of matter as observed macroscopically,
but we must recall that it has common qualitative features, specifically the ap-
proach to equilibrium. Some writers like to emphasize that the Second Law is
one of the most general statements in science. So, in attempting to provide foun-
dations for NESM, it is desirable that they should lead to a formalism from which
these common features can be explained, even though its use may well be labori-
ous in practice. This is the reason for seeking helpful abstract properties of large
dynamical systems, and it is hard to see how the approach to equilibrium could
be otherwise explained in general terms.

I find this convincing evidence that the spectrum of macroscopic liouvillians
must, in practice, be continuous or, if not, failure in that respect must occur only
on unrepresentative energy surfaces, or alternatively failure would take the form
of spectra which are not continuous but contain enormous numbers of discrete
eigenvalues (I avoid misusing the technical term ‘dense’). In the last case, macro-
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scopic behaviour would effectively be irreversible over a very long timescale, and
if that timescale becomes cosmological, it is no longer possible to disentangle
NESM from cosmology itself. This happens roughly when the separation of the
relevant frequency eigenvalues is of the order of the reciprocal of the age of the
universe.

The past 15 years has seen an explosion in research on low-dimensional non-
linear dynamics, prompted by the availability of microcomputers. This research
has revealed that the subject contains a wealth of complicated structure and phe-
nomena that were not anticipated. What are the implications of this for NESM?
As most of the results are specialized, the answer is ‘none’. However, we offer
some comments on the so-called KAM theorem.

Non-integrable systems often contain special simple solutions. In the case of
gravitating particles, the three-body problem is non-integrable, but there are
known simple solutions. For example the particles (which need not be of equal
mass) can move on the vertices of an equilateral triangle rotating in its plane. One
might be tempted to guess that such individual solutions would occupy zero mea-
sure in phase space. The KAM theorem shows that this is not so, as phase space
generally contains ergodic and non-ergodic regions both having positive measure.
(If this were not so, the solar system would be unstable!) NESM as presented here
can survive this point if the non-ergodic regions are of far lower measure than
the ergodic regions; it would reveal the possibility of special initial conditions
(which have small but non-zero measure) leading to behaviour in disagreement
with macroscopic physics. The question is therefore the proportion of measure
occupied by the non-ergodic regions. It would be helpful to know whether that
proportion diminishes as the number of particles increases, as it could then be
safely ignored at N = 10?3, There have been some studies of infinite hamiltonian
systems (Pdschel 1988), but the question is still open.

As we concluded in § 18 that the theories of the two schools (or three, if Zubarev
is to be recognized as separate) are ultimately compatible, the question raised in
this section has the same implications whichever approach is used. We note here
the attention given to the matter. In their texts, neither Balescu nor Zubarev is
much concerned about the point, though on p. 529 Balescu declares that his book
is about those systems for which his methodology works. The case is different for
Jaynes. On the one hand (p. 291) he tells us that maximum entropy ‘is the
only principle needed to construct ensembles which predict any experimentally
reproducible effect, reversible or irreversible’. In view of the discussion of our §17,
we cannot agree with that, as the use of maximum entropy is unnecessary. On
the other hand, the reference to ‘experimentally reproducible effect’ is perceptive,
and is enlarged on a little later (p. 297) where we are told that ‘it is not the
business of statistical mechanics to predict everything that can be observed in
nature, only what can be observed reproducibly’. We agree with that, but not
with the apparent attitude that the ‘reproducible’ cases are to be identified by
trial and error, or experience. We believe that it is the business of theoretical
statistical mechanics to identify what underlies the reproducible case, at least in
general terms. Our answer is the requirement that the integrals over past time
that occur in any of these approaches (in (7.9), Brussels school; (13.13), Zubarev;
(16.7) Jaynes) should converge. That is turn imposes a stochastic condition on
the liouvillian, such as we have discussed in the present section.

It seems to me almost certain that conditions of some kind must also be placed
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upon the level of observation, M, for reproducibility to be obtained. One possi-
bility is to assume that the system has a countable Lebesgue spectrum, (property
(e) of §5). Then the set {U™ f;} might be partitioned into two subsets correspond-
ing to what is observed and what is discarded, respectively. Complete separation
would occur if the partition depends only upon j, with a weaker condition being
sufficient to ensure separation in the sense required for NESM. But it is readily
seen that weaker conditions will suffice in some cases. In those parts of E that
are orthogonal to M (X,t) for all ¢ (if any), the behaviour of L is of no conse-
quence, so the system could even possess a point spectrum (i.e. fail to be mixing).
This does not seem to have been developed, though Spohn (1975) has made some
investigations.

23. Note on quantum mechanics

Our exposition of NESM so far has been based entirely on classical, rather
than quantum, mechanics. It is preferable to restrict attention to one or other in
presenting the above material, as alternating between the two increases the scope
for confusion. Using classical mechanics permits the connection with the standard
ideas of ergodic theory, and moreover leads to an explanation of irreversibility.
But the real world is to be described by quantum mechanics, and the writings of
the rival ‘schools’ often adopt the quantum mechanical setting, so we now outline
the translation of the formalism into quantum-mechanical language, and draw
attention to the modification required.

Starting from elementary quantum mechanics one has a wave function ¢ € H in
the appropriate Hilbert space, taking account of the usual symmetry or antisym-
metry. Statistical mechanics is reached by introducing the so-called density matrix
p € E, where E = 'H ® ‘H. The equation of motion, derived from Schrodinger’s
equation, is the familiar quantum Liouville equation

. dp
where h is Planck’s constant. This equation can be written p = Lp as before,
but now L : E — E has the form of a quantum mechanical ‘superoperator’,
while H : H — 'H is the ordinary quantum mechanical hamiltonian operator.
The expectation value of a quantum observable @ is

(@) = tr (Qp) (23.2)

and the normalization is simply ¢r(p) = 1. As p, in its original form, is a function
of two ‘copies’ of the coordinates that originally appeared in 9, the ‘trace’ in (23.2)
is an integration over these variables, so it is of the same mathematical form as
in the classical case. We can then extend this notion from a single observable to
a collection of them labelled by new parameters, so reaching the familiar Mp = a
where M : E — A is a linear map, just as at (3.3) above.

To work out these ideas in practice, considerable effort has to be devoted to the
quantum mechanical representations suitable for the task in hand. One possibility
is to transform to an occupation-number representation, or even to the Fock space
formalism if the number of particles is not prescribed, so leading to the grand
canonical distribution in the equilibrium theory. Another route is to transform
p to the Wigner function picture, giving a closer correspondence in the classical
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theory, and enabling the construction of the r-particle distributions and the Mayer
expansion. These developments appear in texts, and with unusual completeness
and clarity in Balescu (1975), but we shall not require the details here as we can
work at a more abstract level.

One technicality which we need to note is that if p satisfies (23.1) than so does
f(p) where f is at least twice-differentiable. Although less obvious than in the
classical version, this is readily shown, and enables us to work with n = —logp
and deal with the Gibbs entropy.

Equipped with the information summarized in this section, it can be seen that
the material in §§6-20 can be read without formal change as an exposition of
quantum statistical mechanics; only a reinterpretation of the formalism is re-
quired, as it is based on nothing more than the equations p = Lp and Mp = a.

There must be an eventual difference, of course, and it can be traced to the
nature of Liouville’s equation. In classical mechanics, the equation is of first or-
der in the gs and ps, whereas in quantum mechanics it is of second order. As is
well known, any quantum system confined to a finite part of physical space has a
discrete spectrum. Thus a finite system is not mixing, and one must use an argu-
ment similar to that mentioned in the previous section. For a system composed
of, say, 1023 molecules, the spectrum contains such an astronomically large num-
ber of eigenvalues that the separation between them is minute. The reciprocal of
that separation (expressed in terms of frequencies) gives an estimate of the time
that would elapse before the failure of mixing would be detectable. That argu-
ment is in turn modified at very low temperature, by quantum degeneracy, and
here one does indeed find effects — superconductivity and superfluidity — where
irreversibility is defied.

The subtle nature of the limit # — 0, whereby the spectrum changes from
discrete to continuous has recently been re-examined by Berry (1987) and by
others, and is the subject of intense current research. The corresponding transition
régime for macroscopic properties in NESM is likely to be equally complex.

24. Conclusion

The aim of this paper has been to show how the apparently disparate ap-
proaches to NESM can be related, and that they can be seen as part of a common
underlying structure. For systems that are mixing in the limit # — 0, that struc-
ture enables the construction of evolution equations for observables at a selected
observational level. The macroscopic origins of irreversibility can be traced, and
although it must eventually be related to cosmology, it is possible to see how ir-
reversible behaviour appears mathematically for large but finite isolated systems,
and how the necessary calculations are to be based (in principle) without resort
to any additional assumptions.

I am grateful to have been able to discuss this subject with both Professor I. Prigogine and
Professor E. T. Jaynes. The fact that my viewpoint differs considerably from both of theirs
does not detract from the enormous stimulation that has resulted from their writings. While
this typescript was in the course of revision, I had hoped to discuss this work with Professor
D. N. Zubarev at the Conference STATPHYS18 in Berlin, 2-8 August 1992, as he had also
been an important influence; it was with sadness that I learned that he had died in a traffic
accident on 29 July. I am also grateful in various ways to Professor Michael Redhead, Professor
Mario Rasetti, Professor Radu Balescu, Dr John Skilling, Professor Oliver Penrose and Dr Peter
Coveney.
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